
CONSTRUCTING COST-EFFECTIVE AND
TARGETABLE ICS HONEYPOTS SUITED

FOR PRODUCTION NETWORKS

THESIS

Michael M. Winn, Major, U.S. Army

AFIT-ENG-MS-15-M-045

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-15-M-045

CONSTRUCTING COST-EFFECTIVE AND TARGETABLE ICS HONEYPOTS

SUITED FOR PRODUCTION NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Michael M. Winn, B.S.

Major, U.S. Army

26 March 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-15-M-045

CONSTRUCTING COST-EFFECTIVE AND TARGETABLE ICS HONEYPOTS

SUITED FOR PRODUCTION NETWORKS

THESIS

Michael M. Winn, B.S.
Major, U.S. Army

Committee Membership:

LTC Mason Rice, PhD (Chairman)

Barry E. Mullins, PhD (Member)

Juan Lopez, Jr. (Member)

AFIT-ENG-MS-15-M-045

Abstract

Our nation’s privately owned critical infrastructure is at risk. Malicious actors

are constantly developing exploitation techniques that circumvent traditional IP con-

trols. Honeypots are a technique that can mitigate the risk of these threats. Effective

honeypots are authentic and targetable, and their design and implementation must

accommodate risk tolerance and financial constraints. Developing honeypots for In-

dustrial Control System (ICS) networks is difficult. The proprietary, and often ex-

pensive, hardware and software used by ICS devices creates the challenging problem

of building a flexible, economical, and scalable honeypot.

Honeyd is an existing open source framework designed to create a large footprint

of traditional Information Technology (IT) honeypots, however, it lacks authenticity

when implemented with an ICS. This research extends Honeyd into Honeyd+, making

it possible to use the proxy feature to create multiple high interaction honeypots with

a single Programmable Logic Controller (PLC).

This research begins with pilot studies to examine the behavior of the PLC and

Honeyd. The results establish scope and context for the development and evaluation

of the Honeyd+ modifications. Honeyd+ is tested with a network of 75 decoy PLCs,

and the interactions with the decoys are compared to a physical PLC to test for

authenticity. The performance test evaluates the impact of multiple simultaneous

connections to the PLC to determine targetability.

The functional test is successful in all cases. The performance test demonstrates

that the PLC component is a limiting factor, and that introducing Honeyd+ has a

marginal impact on performance. Notable findings are that the Raspberry Pi is the

preferred hosting platform for the EtherNet/IP protocol and more than five simulta-

neous connections significantly decrease performance.

iv

Acknowledgements

I would like to thank my committee for their guidance, mentorship, and assistance

throughout this research process.

Stephen Dunlap deserves special recognition for his assistance with setting up the

lab gear, troubleshooting code, and honest advice in this endeavor.

I would like to thank my lovely wife and children for supporting me with all of

the reading sessions, late nights in the lab, and the occasional frustration when the

project was especially challenging.

Michael M. Winn

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Motivation . 1
1.2 Assumptions . 2
1.3 Research Goals and Hypothesis . 2
1.4 Related Research . 3
1.5 Thesis Layout . 3

II. Background . 4

2.1 Honeypot Characteristics . 4
2.2 Traditional IT Honeypots and Honeynets . 5

2.2.1 Production Versus Research Honeypots . 6
2.2.2 Levels of Interaction . 7

2.3 Industrial Control Systems (ICS) Honeypots . 8
2.3.1 Related Research . 9

2.4 Honeyd . 10

III. Device Description . 12

3.1 Design Considerations . 12
3.1.1 Targetability . 12
3.1.2 Authenticity . 13

3.2 Pilot Studies . 14
3.2.1 Pilot Study 1: Building a Honeyd Template 14
3.2.2 Pilot Study 2: Honeyd Authenticity Study 15
3.2.3 Pilot Study 3: PLC Performance Study . 18

3.3 Improving Authenticity . 21
3.3.1 Adding Search Terms to the Honeyd Template

Object . 21
3.3.2 Developing the Search Terms . 22
3.3.3 Search and Replace on the Payload . 24

vi

Page

IV. Methodology . 26

4.1 Test Environment . 26
4.2 Experimental Design . 27

4.2.1 Functional Test . 27
4.2.2 Performance Test . 29

4.3 Limitations . 32

V. Results and Analysis . 33

5.1 Functional Test . 33
5.2 Performance Test . 37

5.2.1 Evaluation . 37

VI. Conclusion . 42

6.1 Research Conclusions . 42
6.1.1 Functional Test . 42
6.1.2 Performance Test . 42
6.1.3 Research Hypothesis . 43

6.2 Significance of Research . 43
6.3 Future Work . 44

6.3.1 Test Different PLCs Manufacturer Protocols 44
6.3.2 Develop Additional Search Term Capabilities 44
6.3.3 Compensate for the Limitations of the PLC 44
6.3.4 Deploy on a Network . 45

Appendix A. Nmap Results from Pilot Study 1 . 47

Appendix B. plcloadtest.py code . 58

Appendix C. PLC Templates . 67

Appendix D. Performance Test Raw Data . 70

Bibliography . 75

vii

List of Figures

Figure Page

2.1 Anatomy of a Honeyd host. 11

3.1 The attacker’s perspective: results after running an
nmap scan on an empty subnet (top) with 75 Honeyd
hosts (bottom). 16

3.2 Authenticity flaws with the Honeyd hosts. 17

3.3 Results of pilot study 3. 20

3.4 Adding the linked list of search terms to the template
structure. 22

3.5 The icsproxy options are parsed from the configuration
file (top) into a linked list (bottom) for later use. 23

3.6 Anatomy of a Honeyd host with icsproxy modifications. 25

4.1 The evaluation environment. 27

4.2 Validation of correct search terms within a template. 28

5.1 Search terms used in the authenticity test. 34

5.2 nmap port enumeration and fingerprint: The actual PLC
(left) and the Honeyd+ host response (right). 35

5.3 Web page response: the actual PLC web page (left) and
the Honeyd+ host web page(right). 36

5.4 The ListIdentity (0x0063) command via nmap NSE
script: The actual PLC (left) and the Honeyd+ host
response (right). 36

5.5 Interaction plots of error rate versus number of threads
for the CP1L PLC and HTTP protocol. 38

5.6 Interaction plots of error rate versus number of threads
for the L61 PLC and HTTP protocol. 39

5.7 Interaction plots of error rate versus number of threads
for the CP1L PLC and EtherNet/IP protocol. 40

viii

Figure Page

5.8 Interaction plots of error rate versus number of threads
for the L61 PLC and EtherNet/IP protocol. 40

6.1 Potential implementation of Honeyd+ as a production
honeynet. 46

ix

List of Tables

Table Page

2.1 Advantages and disadvantages of different levels of
interaction [25]. 8

3.1 nmap options used to exhaustively enumerate both PLCs 14

3.2 Pilot study 1 results. 15

3.3 Results of pilot study 2. 18

3.4 Reasonable data rates (requests per second) determined
from pilot study 3. 21

4.1 nmap options used for the functional test . 28

4.2 wget options used for the functional test . 29

4.3 Experimental of factors and levels. 31

5.1 Results of functional test . 34

5.2 Summarized mean error rates for the CP1L . 37

5.3 Summarized mean error rates for the L61 . 37

5.4 Results of performance test. 41

4.1 Summary Statistics (verbose) for the L61, EtherNet/IP
Protocol . 71

4.2 Summary Statistics (verbose) for the L61, HTTP
Protocol . 72

4.3 Summary Statistics (verbose) for the CP1L, ENIP
Protocol . 73

4.4 Summary Statistics (verbose) for the CP1L, HTTP
Protocol . 74

x

CONSTRUCTING COST-EFFECTIVE AND TARGETABLE ICS HONEYPOTS

SUITED FOR PRODUCTION NETWORKS

I. Introduction

1.1 Motivation

On November 20, 2014, the Director of the National Security Agency, Admiral

Mike Rogers stated that several actors, including China, Russia, and other groups

have the capability to disrupt utilities such as the distribution of electricity and other

energy assets throughout the United States causing physical destruction, personal

injury, and even death [10].

Admiral Rogers further expressed his desire to share threat intelligence with the

private sector, but implied that the private sector lacks the ability to collect and ana-

lyze precise network sensor data required to make the intelligence useful in detecting,

preventing, and recovering from a cyber attack. This is due in part to reliance on

IP-based protection devices, such as intrusion detection systems and firewalls. Fur-

ther compounding the problem, malicious actors have a fundamental understanding

of current signature-based sensor technologies and can engineer malware to elude such

systems, making their activities undetectable. A honeypot is an effective method to

learn about an attacker’s tactics, techniques, and procedures [25, 31].

Cyber threats targeting critical infrastructure are genuine, and the upward trend

of incidents poses significant risk to national security. In 2013, the Department of

Homeland Security (DHS) Industrial Control System Cyber Emergency Response

Team (ICS-CERT) responded to 257 cyber incidents. The energy sector, which in-

1

cludes petroleum, natural gas, and electricity generation and distribution, accounted

for 145 (56%) of those incidents. Cyber incidents on critical infrastructure continue

to increase, up 30% from the previous year [11].

1.2 Assumptions

This research uses the following assumptions:

• Traditional IT honeypot techniques do not transfer or scale easily to the ICS

sector. Hardware and software components are often proprietary and have

little publicly available documentation, which hinders third party development

of protection mechanisms.

• Equipment cost constrains honeypot implementation on Industrial Control Sys-

tem (ICS) networks.

• Computing resources for ICS components are designed to serve a specific pur-

pose, and are focused on accuracy and response time. ICS components do not

have the extensive processing power and memory resources of general purpose

computers that are designed to run multiple applications at once.

• Private organizations operating critical infrastructure are reluctant to introduce

additional mechanisms to their control systems. This is due to perceived–or

real–risk of interference, exposure of competitive business practices, or lack of

funding.

1.3 Research Goals and Hypothesis

The overarching goal of this research is to extend the functionality of an existing

honeypot framework so that it can replicate many decoy PLCs using one physical

PLC. The research hypotheses are:

2

• A passive network component between the attacker and the physical PLC can

present an accurate representation of many decoy PLCs to the attacker.

• The performance limitation of a PLC is the limiting factor of performance in

the honeypot implementation, thus limiting targetability.

• The high cost platform hosting the decoys has more computing resources avail-

able and will outperform the low cost platform.

1.4 Related Research

This research extends the work of R. Bodenheim, where a honeypot implementa-

tion examined whether the Shodan search engine lead to increased cyber attacks on

ICS devices exposed to the public Internet [3].

1.5 Thesis Layout

Chapter 2 describes the background and establishes context for this research.

Chapter 3 describes the development of the honeypot, and Chapter 4 explains the

methods used to evaluate the honeypot. Chapter 5 presents the results of the evalu-

ation. Finally, Chapter 6 offers conclusions and opportunities for further research.

3

II. Background

This chapter provides the background knowledge needed for a basic understanding

of honeypots, deploying honeypots in an ICS environment, and a description of the

existing Honeyd framework. A basic understanding of networking and ICS environ-

ments (e.g., components, basic functions, architecture, and terminology) is assumed.

Section 2.1 defines basic characteristics of honeypots, providing the basis for evalu-

ation. Section 2.2 provides a brief background on traditional honeypot terms and

technologies to establish context. Section 2.3 focuses on ICS honeypots, including

previous research. Finally, a description of the features and functionality of Honeyd

is introduced in Section 2.4.

2.1 Honeypot Characteristics

Successful honeypots balance the following characteristics: authenticity, targetabil-

ity, cost, and risk. An authentic honeypot mimics the features of a real computer

system. More realistic features yield a more complex honeypot, and collects more

detailed data. Honeypots are useless if the attacker avoids them. Therefore, a honey-

pot must be targetable; displaying a large enough presence to attract the attacker’s

attention. The financial cost is a major consideration, and includes the initial devel-

opment, deployment, maintenance, operation, data storage, and analysis of the data

collected.

Finally, there are several risks associated with a honeypot, namely attracting an

attacker, and dealing with the consequences of an attacker discovering the honeypot–

disabling or revealing the existence of the honeypot to others. One should carefully

consider risks, consequences, and mitigation measures prior to implementing any

honeypot solution.

4

Balancing cost with size and authenticity results in design tradeoffs that focuses

the honeypot implementation goals on the various stages of a cyberattack: reconnais-

sance, enumeration, gaining initial access, and maintaining access [29]. Honeypots

that are minimally authentic are suitable for detecting automated reconnaissance

probes, while high authenticity honeypots are required to study highly complex at-

tacks, such as an advanced persistent threat (APT).

2.2 Traditional IT Honeypots and Honeynets

Research on IT honeypots is plentiful and continues to evolve. Prior to 2006, tra-

ditional high-interaction honeypots were limited by costly physical hardware. Several

research efforts, including The Honeynet Project [30], explored the problem of cre-

ating and implementing realistic (i.e., authentic) honeypots with meaningful data

collection mechanisms, while minimizing the costs to develop, deploy, and maintain.

Virtualization technologies became widespread in the IT market between 2006 and

2008, making it convenient and inexpensive to deploy multiple high-interaction virtual

machines as honeypots to collect detailed data on cyber threats [25].

Some honeypots, called production honeypots, are created to serve as decoy sys-

tems. The decoys obscure the valuable assets, while logging mechanisms such as

syslog monitor for anomalous activity. A honeynet is an implementation of multi-

ple high-interaction honeypots in an engineered architecture that closely mimics the

aspects of a real production network. Deploying and monitoring a honeynet involves

increased financial costs, in the form of system design, equipment requirements, and

personnel considerations for managing the collection, analysis, and overall operation

of the honeynet [31]. There is no standard size of a successful honeynet. The security

objectives, network architecture, and available resources of the asset owner influences

the quantity of decoy systems required for an effective honeynet.

5

In a honeynet architecture, the individual honeypot components should appear

and function identically to their real counterparts so that the attacker cannot dis-

tinguish the real systems from the decoys. However, the costs for such authenticity

multiplies as the size (i.e., targetability) increases, quickly making this solution pro-

hibitive. In other words, honeynets have a footprint big enough to attract potential

attackers, but the complexity of programming and equipment required can result in

lesser authenticity than what is required to capture and maintain the attention of a

serious malicious actor.

2.2.1 Production Versus Research Honeypots.

There are generally two categories of honeypots: production honeypots and re-

search honeypots. Production honeypots are primarily intended as sensors or decoys

to supplement existing security mechanisms on a production network [31]. Since they

are deployed on a production network, the goals are detection and deception; keeping

the attacker engaged with the honeypot so that they will not attack other assets on

the network. The ultimate goal is to use the production honeypot as a tool to sup-

plement signature-based detection devices in quickly detecting and recovering from

an attack. Production honeypots focus on minimizing costs and risk to the existing

network.

Research honeypots are intended to attract an attacker and sustain the attack for

as long as possible for the purpose of collecting detailed information such as unfore-

seen attack vectors, zero-day exploits, or post-attack activity (e.g., search terms for

sensitive data, production of phishing email messages, or capturing the attacker’s key

strokes). While this information is not directly valuable to the average business orga-

nization, it helps security researchers develop an understanding of the attacker, their

methods, and their motivations [30]. Research honeypots must be highly authentic,

6

so they are generally more complex to configure and involve more effort to deploy,

monitor, and analyze.

2.2.2 Levels of Interaction.

There are generally two levels of interaction to describe the authenticity of a hon-

eypot. Low interaction honeypots emulate a limited behavior of a small number of

services. For example, a low interaction honeypot could return a static HTML file in

response to an HTTP GET request on TCP port 80. Low interaction honeypots can

range from simple scripts to elaborate emulation programs that require little configu-

ration, resources, or effort to deploy and manage, particularly in great numbers. For

these reasons, low interaction honeypots are an attractive foundation for production

honeypots [25]. Since low interaction honeypots only expose a subset of exploitable

features, they are limited in the amount of information they can collect. The reduced

authenticity also contributes to reduced risk. An attacker interacts with a controlled

simulation of predetermined responses and behaviors; a carefully designed low inter-

action honeypot is less likely to become assimilated into a botnet or used as a pivot

than a real system.

High interaction honeypots expose the full functionality of an operating system

and applications. Since it can be compromised in unexpected ways, additional miti-

gation techniques are required to isolate the malicious activity and reduce the risk to

the production network. High interaction honeypots often require extensive configu-

ration and dedicated equipment to ensure they are believable to an attacker. Common

techniques include rigging them with specific vulnerabilities, default passwords, and

phony sensitive data files. Covert monitoring logs all activity on the honeypot with-

out the attacker being able to detect that their activities are being recorded [25].

The advantages and disadvantages of the two levels of interaction are summarized in

7

Table 2.1.

Table 2.1. Advantages and disadvantages of different levels of interaction [25].

Interaction Uses Advantages Disadvantages

Low Production
Lower cost
Lower risk
Large presence potential

Limited authenticity

High Research Highly authentic
Higher cost
Higher risk
Presence constraints

2.3 Industrial Control Systems (ICS) Honeypots

The ICS sector lacks the advantages of virtualization that the IT sector has, so

there are currently few honeypot options that offer the same level of functionality

and flexibility as for traditional IT systems. Current research on ICS honeypots con-

sists mostly of low-interaction emulators [22, 26]. Low-interaction honeypots can be

deployed on inexpensive, flexible platforms like a Raspberry Pi or Gumstix, which

is a low-cost approach to replicating multiple decoys. One hidden drawback to low-

interaction honeypots is the extensive time and labor required to develop vendor-

specific protocols and usually feature a limited set of capabilities (e.g., lack of au-

thenticity, small size, etc.) [2, 16].

Research with high interaction ICS honeypots demonstrates more flexibility and

the potential to collect detailed data on evolving attack tactics, techniques, and pro-

cedures. The investment in a full-scale test bed is prohibitive to all but well-funded

research institutions and governments [15]. Such full-scale systems are rare and their

use is limited to controlled experimentation and research. They are rarely exposed to

the Internet to collect live threat data. Furthermore, these test bed environments are

often built to model a specific environment (e.g., power grid, water treatment plant,

8

or refinery) and not flexible enough to adapt to implementation across a diverse in-

dustry.

A single Programmable Logic Controller (PLC) can range in cost from several hun-

dred dollars, such as the OMRON CP1L (approximately $900), to several thousand

dollars, such as the Allen-Bradley 1756-L61 (approximately $5500). The cost of mul-

tiple physical devices quickly limits the scalability for implementation as expendable

honeypots [32]. For instance, deploying authentic, targetable honeypots consisting of

30 L61 PLCs, the cost may be upward of $165,000 for the initial hardware.

2.3.1 Related Research.

CONPOT.

The Honeynet Project spawned CONPOT in May 2013 as an open source ICS

honeypot development effort [26]. The python-based framework features a config-

urable emulator (i.e., low-interaction) that mimics a Siemens S7-200 PLC (MODBUS,

HTTP, SNMP, and s7comm) and a web-based HMI. CONPOT encourages volunteers

to adapt and deploy instances of the emulator worldwide, sending their results back

to members of the project for analysis [26]. CONPOT demonstrates a decentralized

method of achieving a large honeynet by distributing the cost and risk among many

volunteers. This approach may not be acceptable for private enterprises, who may

interpret sharing such information as a threat to their competitive business strategy.

Impact of the SHODAN Computer Search Engine.

In 2013, R. Bodenheim conducted a study with physical PLC honeypots (i.e.,

high interaction) to determine if discovery by the Shodan [19] search engine increased

attack activity [3]. His conclusions noted that the honeypot design was limited to

four devices, and expanding the size of his honeypot (e.g., the number of honeypots

9

exposed) was an opportunity for further research. One of Bodenheim’s recommenda-

tions was to amplify the presence of one physical PLC with the proxy capability of

a tool called Honeyd, hosted on a cloud computing platform such as Amazon’s EC2

service [3].

2.4 Honeyd

Honeyd is a low-interaction honeypot framework, developed by Neils Provos in

2004. Honeyd is free, open source software, released under GNU General Public

License[24]. It was designed to simulate network behavior and topologies for the

purpose of studying and defeating Internet worm propagation, such as the well-known

Slammer [6, 21], Code Red [5, 20], and Blaster [1, 7] worms .

The features of Honeyd make it an ideal framework on which to begin creating a

high-interaction honeynet that avoids acquiring dozens of physical PLCs. Namely, it

can create a large footprint and it is freely available. The desired honeypot is protocol

independent to accommodate a wide range of ICS equipment, and can achieve the

size required for effective production honeypot implementations.

The central component of Honeyd is a plain-text configuration file in which host

templates are defined. A Honeyd template defines the characteristics that the hon-

eypot host displays to the attacker. Honeyd hosts are created by associating IP

addresses with a template using the keyword “bind.”

The main characteristic of a Honeyd template is a “personality”, which is also the

keyword used to identify the operating system for the template to mimic. Honeyd

personalities are an implementation of the nmap fingerprint database, nmap-os-db[18].

Honeyd can also generate the Media Access Control (MAC) address. With a specified

name, Honeyd matches the vendor portion of the MAC address from the nmap im-

plementation of the IEEE Organizationally Unique Indentifiers (OUI) table [18], and

10

can generate the remaining host portion. The Ethernet address can also be explicitly

specified, if desired.

Other characteristics of a template include ICMP type, TCP ports, and UDP

ports. The essence of the low-interaction capability provided by Honeyd is the re-

sponse, or “action,” carried out by associating scripts, executables, or subsystems

with each port. Honeyd features a built-in proxy capability that can forward incom-

ing connections to a physical host:port, providing a potential for high-interaction

functionality [23]. Figure 2.1 illustrates the basic architecture for a proposed imple-

mentation of Honeyd, and the interaction between an attacker and the PLC.

Figure 2.1. Anatomy of a Honeyd host.

11

III. Device Description

This chapter covers definitions, design criteria, and development of the Honeyd

honeypot. Definitions and design considerations are discussed in Section 3.1. The

pilot studies are described in Section 3.2, and the subsequent modifications made to

Honeyd are addressed in Section 3.3.

3.1 Design Considerations

The goal of this research is to create an ICS honeypot that increases targetability

and authenticity without the increased cost. Honeyd is selected as the underlying plat-

form for the honeypot due to its demonstrated ability to generate a large footprint of

decoys [24]. The two PLCs used to conduct exploratory testing are the Omron CP1L

with a CP1W-EIP61 EtherNet/IP adapter and Allen-Bradley 1756-L61 ControlLogix

with a 1756-EWEB module.

3.1.1 Targetability.

A targetable honeypot should consist of multiple decoys to attract an attacker’s

attention among the millions of other hosts on the Internet. The decoys should also

appear in relevant surroundings. A lone PLC on the Internet is of little significance

to an attacker, because it is unlikely to be a part of a larger system. Several PLCs on

a contiguous subnet, perhaps with additional components such as a Human Machine

Interface (HMI) computer, could convince the attacker that the decoy is a legitimate

control system [4]. The proposed Honeyd implementation proxies several decoys to a

single PLC, therefore the PLC must be able to support higher data rates over multiple

simultaneous connections. One approach to measure the performance of the PLC over

various data rates is by error rate, or the ratio of sent data to valid responses. Optimal

12

performance consists of an error rate below an established threshold.

3.1.2 Authenticity.

The decoy should be convincing enough that an attacker—either human or automated—

could progress through the reconnaissance, enumeration, and initial access phases of

an attack [29]. A common tactic during the reconnaissance and enumeration stages is

to use a port scanning and fingerprinting tool. Once the attacker observes the decoy,

the next step is to explore it.

Nmap is an open-source and freely available tool that can identify hosts on a subnet

(i.e., by IP address) and enumerate the open TCP/IP ports on each host. Nmap has

the capability to determine the host operating system–called fingerprinting–based on

analyzing the responses received from sending TCP/IP probes to open and closed

ports on a host. nmap has a feature called the Nmap Scripting Engine (NSE) that can

perform additional enumeration tasks, such as vulnerability detection in the form of

external scripts [18].

After identifying the hosts, and enumerating the operating system and network

services running on each of the hosts, the attacker’s next step is to explore the services

for additional information and exploitable vulnerabilities. The default nmap settings

enumerates the system ports (TCP/UDP 1-1023). The result of an initial scan of a

PLC would show the common TCP port 80/http as open. Exploration of the web

page would confirm that the device is a PLC, and could lead to additional protocol-

specific reconnaissance on user ports (TCP/UDP 1024-49151). Another consideration

is consistency, which is discussed in Section 3.2.2.

Measuring authenticity is accomplished by reproducing an attacker’s methods with

available tools, observing the responses of various commands and inquiries, under

both normal and abnormal conditions. Successful authenticity consists of observing

13

accurate and consistent responses from the decoy that a similar, real physical device

would produce.

3.2 Pilot Studies

A series of pilot studies is required to determine the feasibility of using Honeyd as

an ICS honeypot solution, and to shape the specific metrics for evaluating authenticity

and targetability. The first pilot study enumerates the network identity of two PLCs.

The results form the basis for the initial configuration of Honeyd as well as a baseline

for comparison. The second pilot study compares an enumeration of a Honeyd host

to the baseline to determine if there are observable authenticity gaps. The third

pilot study establishes the range of data rates to develop a quantifiable metric for

targetability.

3.2.1 Pilot Study 1: Building a Honeyd Template.

The first pilot study uses nmap with operating system fingerprinting and an ex-

haustive enumeration of the full range of TCP/UDP responses of two different PLCs.

The nmap options used are summarized in Table 3.1.

Table 3.1. nmap options used to exhaustively enumerate both PLCs

Option Description

-sS TCP SYN Scan
-sU UDP Scan
-p* Scan TCP and UDP ports 1-65535
-PE ICMP Echo probes
-PP ICMP Timestamp Probes

-A
Enable OS detection, version detection,
script scanning, and traceroute

-sC
Runs all of the NSE scripts in the
”Default” category (101 scripts total)

-T4 Aggressive timing
-vv Very verbose output

14

The results, summarized in Table 3.2, are used to construct the Honeyd templates.

Verbose results are in Appendix A. For a more efficient approach, only the well-known

ports (1-1024) and the additional discovered ports (e.g., 2222 and 44818) are included

in subsequent nmap scans. This is a safe assumption because nmap requires at least

one open and one closed port to conduct fingerprinting, and additional ports are

unlikely to appear on either the PLC or the Honeyd platforms without intentional

configuration.

Table 3.2. Pilot study 1 results.

L61 CP1L

OS VxWorks HP iLO 2 remote management interface

MAC Address
00:1D:9C:BE:67:93
(Rockwell Automation)

00:1D:4B:F0:22:66
(Grid Connect)

Open Ports

tcp/80
tcp/44818
udp/2222
udp/44818

tcp/80
tcp/9999
tcp/44818
udp/69
udp/2222
udp/30718
udp/44818

3.2.2 Pilot Study 2: Honeyd Authenticity Study.

Figure 3.1 illustrates an nmap scan of an empty subnet, and the same subnet

after launching Honeyd configured with a template of 75 Allen-Bradley 1756-L61

ControlLogix PLCs, using the information from pilot study 1. In the figure, each dot

is labeled with the IP address that responded to the nmap probes.

The initial test of Honeyd with an nmap scan appears successful. Nmap correctly

identifies the operating system and the open ports. However, upon deeper exami-

nation of the Honeyd hosts, authenticity flaws are discovered. Each of the Honeyd

hosts are identical, with no uniqueness among them (see Figure 3.2). A request for

15

Figure 3.1. The attacker’s perspective: results after running an nmap scan on an empty
subnet (top) with 75 Honeyd hosts (bottom).

16

the web page from all of the Honeyd hosts results in the same static web page for

the physical PLC, MAC Address, hostname, and serial number. Additionally, the

IP address listed on the web page does not match the IP address used to connect to

the Honeyd host. Pilot study 2 establishes the qualitative attributes of authenticity

that will be used in the evaluation. The successful attributes are denoted with a Xin

Table 3.3. Missing attributes are denoted with an X.

Figure 3.2. Authenticity flaws with the Honeyd hosts.

17

Table 3.3. Results of pilot study 2.

Metric Consistent Unique

Open Ports X X
OS Fingerprint X X
IP Address X X
MAC Address X X
Hostname X X
Serial Number X X

3.2.3 Pilot Study 3: PLC Performance Study.

A custom Python script is designed to test performance of both the EtherNet/IP

protocol [9] and the HTTP protocol on each PLC. The script uses the python ENIP

class developed by S. Dunlap to craft the necessary packets for communication with a

PLC [12]. The test begins by opening a TCP connection to the PLC or Honeyd host,

and sending a protocol-specific request. It asynchronously collects and evaluates the

response, and the process is repeated for a fixed duration. Connections are executed

in separate execution threads in order to simulate simultaneous connections. At the

end of the test duration, the TCP connections are closed gracefully and the script

outputs the results to a text file. The error rate metric (lower is better), is calculated

from the output. The test script code is included in Appendix B.

A third pilot study validates the accuracy of the performance testing script and

establishes a maximum effective data rate for further testing. Testing conducted over

10, 30, and 60 second durations for each collection period showed that 30 seconds was

sufficient to reach a steady state on both PLC platforms considered for this study. The

performance pilot study also revealed that as the sending data rate increases, the PLC

responds by reducing the TCP Window size, eventually to zero. Thus, establishing an

error rate based on (sendsuccess−receivesuccess)/sendsuccess will result in measurements

biased by latency. For this research, the error rate definition is slightly modified by

18

fixing the number of requests sent in a fixed time period to reduce measurement bias

related to latency. Therefore, considering the number of attempted requests against

the number of valid responses removes the bias. See Equation 3.1.

ErrorRate =
(sendattempt − sendsuccess) + (sendsuccess − receivesuccess)

sendattempt

(3.1)

Finally, the pilot study showed that the maximum number of simultaneous Ether-

Net/IP Sessions was 64 for the L61, and only 4 for the CP1L. Testing the maximum

sessions consisted of iteratively creating a TCP connection, followed by registering

an ENIP session. Both PLCs stopped responding to the register session request

when they reached their maximum. The connection limitation is documented in the

L61 specifications [27]; the limitation is not listed in either the CP1L nor the CP1W

EtherNet/IP module specifications [13]. The limitations apply to the maximum num-

ber of simultaneous EtherNet/IP sessions that the PLC can handle at any given point

in time, however, it does not impact the ability for Honeyd to advertise hosts.

An error rate threshold of 25% is selected because it is the approximate point

where both PLCs begins reducing the TCP window size, resulting in increased error

rates (see Figure 3.3). The results of the pilot study establishes reasonable data rates,

shown in Table 3.4.

The TCP connections for the HTTP protocol timed out (e.g., RST) if no data was

sent, and the PLC closed the connection gracefully (e.g., FIN, FIN-ACK, RST) at

the conclusion of each reply. It should be noted that the error rates of the web servers

on both PLCs was substantially higher than EtherNet/IP, particularly on the CP1L,

where the lowest error rate was approximately 60% (e.g., above the 25% threshold).

19

Figure 3.3. Results of pilot study 3.

20

Table 3.4. Reasonable data rates (requests per second) determined from pilot study 3.

ENIP HTTP

L61 300 50
CP1L 80 20

3.3 Improving Authenticity

An authentic network device has a unique identity (e.g., an IP address, MAC

address) that distinguishes it from other network devices. Serial numbers and host-

names are examples of other types of identifiers. Some identifiers, such as the device

make and model should remain constant; modifying these values would not apply in

this application. The unique identity must be consistent. When an attacker con-

nects to a device using a certain address and queries the device for its identity, the

response should consistently match what the attacker expects to see, specifically with

repetitive queries. Native Honeyd and PLCs both lack the capability to dynamically

change these values, however, the Honeyd source code can be modified to accomplish

this task. The following sections describe the modifications to Honeyd.

3.3.1 Adding Search Terms to the Honeyd Template Object.

The first modification to the Honeyd source code involves adding a linked list,

called proxy srchitem to the template structure in template.h. Each proxy srchitem

consists of a (char) find, (char) replace, and the respective (int) lengths of each. A

conceptual illustration of the modified template data structure is shown in Figure

3.4. Storing the search terms into each template’s data structure upon initializa-

tion will ensure the desired consistency. To clarify, consider a scenario where an

attacker connects to a target computer using a secure shell (i.e., ssh) to the IP ad-

dress 10.1.10.12. If the attacker were to then query the target with a command such

as ifconfig, they would expect the output to display the IP address 10.1.10.12.

21

Repeated queries, or queries using alternate utilities (e.g., traceroute), should also

consistently display 10.1.10.12. If the attacker were to reconnect and attempt the

same commands at a later time, the output should still display 10.1.10.12.

Figure 3.4. Adding the linked list of search terms to the template structure.

3.3.2 Developing the Search Terms.

The file config.c contains the code that implements and administers the tem-

plates, which are stored in a splay tree object (defined in tree.h). The second modifi-

cation adds a new function proxy build srchlist() that initializes the proxy srchitem

list that was added to the template object.

Honeyd supports plug-in modules for enhanced functionality. The keyword option

triggers the configuration file parser to store the line of text into a linked list of

honeyd plugin cfgitem for use by plug-ins (see Figure 3.5). Immediately following

the option keyword option items is a plugin name. The name “icsproxy” is used

to identify the search terms in this modification.

In the file plugins config.c, a new function called plugins config find pkg items()

is created to extract the options denoted as “icsproxy” from the honeyd plugin cfgitem

into a separate consolidated list, leaving the original honeyd plugin cfgitem list un-

modified.

22

Figure 3.5. The icsproxy options are parsed from the configuration file (top) into a
linked list (bottom) for later use.

The last step is to store the search and replace terms in each template in the tem-

plate tree. The new function proxy update srchlist(tmpl) in config.c iterates

through each search term in the icsproxy consolidated list and adds it to the template’s

search list. The associated replace term for the IP Address, MAC address, host name,

and serial number are calculated by utility functions that were added to config.c.

The utility functions take advantage of the data available within the template struc-

ture to generate the appropriate replace term. More protocol-specific calculated

search terms can be added to the switch() statement in proxy update srchlist

as required by specific implementations. Examples include data fields, such as a

description, location, or product code used by a particular protocol. The search

options can also handle static search and replace pairs, both ASCII text and raw

byte patterns. Once all of the templates are populated with their search and replace

terms, Honeyd completes some remaining initialization tasks, then begins listening

23

for connections to any of the IP addresses that are bound to templates.

3.3.3 Search and Replace on the Payload.

A new file called icsproxy.c contains the search and replace functions, and was

inspired by code originally designed by Laird Shaw to provide a C equivalent to the

PHP function str replace() [28]. Shaw’s code leverages the standard C strstr

function to iteratively find all occurrences of the find string, and replaces them with

copies of another string. However, the implementation relies on NULL terminated

strings. In order to have the ability to search and replace the full range of binary

values, Shaw’s code is adapted to use specified string lengths instead of relying on

NULL terminated ASCII strings.

In order to achieve the inline search and replace functionality, a new function

processpayload() is inserted into tcp send() and udp send() in honeyd.c. The

processpayload() function provides a pointer to the appropriate template, the data

payload, and the payload length being handled. processpayload() iterates through

the template’s search list, calling the replace str() function for each set of search

and replace terms in the search list. A pointer to the modified payload is returned and

the sending function continues wrapping the modified payload into a TCP/IP packet

for transmission to its destination. Figure 3.6 illustrates the modifications applied to

the Honeyd architecture with the added find/replace list and payload modification

features.

24

Figure 3.6. Anatomy of a Honeyd host with icsproxy modifications.

25

IV. Methodology

The evaluation approach of the Honeyd with icsproxy modifications, hereafter

referred to as Honeyd+, consists of a functional test and a performance test to evaluate

targetability. Section 4.1 describes the environment used to conduct the tests. Section

4.2 outlines the experimental design for the functional and performance tests. The

limitations of Honeyd+ are described in Section 4.3.

4.1 Test Environment

The test environment consists of a low-cost PLC (Omron CP1L with a CP1W-

EIP61 EtherNet/IP adapter) and a high-cost PLC (Allen-Bradley 1756-L61 Con-

trolLogix, with a 1756-EWEB module). Both PLCs use HTTP and the EtherNet/IP

industrial protocol. Honeyd+ is hosted on a low-cost computing platform (Raspberry

Pi running Raspbian, approximately $50) and a high-cost computing platform (HP

EliteBook 8570w Laptop running Ubuntu Server 14.04 LTS, approximately $1800).

Each Honeyd+ platform has two network interface cards, one is used for the

public-facing IP space, where the honeypots are deployed, and the other is configured

on the PLC VLAN for communication between the PLC and the Honeyd+ platform.

Both Honeyd+ platforms have two configuration files, one advertising 75 hosts of the

L61 template, and the other advertising 75 hosts of the CP1L template. The tests are

launched from an “attacker” PC running Kali-Linux from the public-facing IP space,

and the components are connected with a CISCO Catalyst 3550 switch configured

with inter-VLAN routing (see Figure 4.1).

26

Figure 4.1. The evaluation environment.

4.2 Experimental Design

4.2.1 Functional Test.

The first test evaluates the authenticity of Honeyd+, using an Allen-Bradley L61

PLC and an OMRON CP1L PLC. Using the results from pilot testing, templates

are created for both PLCs that include search terms for IP address, MAC Address,

hostname, serial number, and the product name as a static search and replace pair

(See Appendix C). Honeydctl is a utility function included with Honeyd that provides

the operator the ability to monitor the status of Honeyd. An additional modification

to Honeyd+ enabled the ability to list the search terms in each template (See Figure

4.2).

The test procedure consists of using nmap to conduct a port scan and operating

system fingerprint of the physical PLC as well as the Honeyd+ hosts, running on

the Raspberry Pi and an HP Laptop platforms. Additionally, the wget [14] util-

ity downloads web pages with the HTTP protocol, and the nmap scripting engine

(NSE) enip-info script tests the proxy functionality on the EtherNet/IP protocol

27

Figure 4.2. Validation of correct search terms within a template.

by sending the EtherNet/IP “ListIdentity” 0x0063 command [17].

The expected results are that the OS fingerprinting and port enumeration func-

tions are preserved, and that the search terms (i.e., IP address, MAC Address, host-

name, serial number, and product name) are consistently applied to give each decoy

a unique identity.

The tests are repeated three times, in random order, to evaluate consistency, to

account for error, and to reduce testing bias. The results are inspected, with the

assistance of the diff3 utility. The nmap and wget options that are used are shown

in Tables 4.1 and 4.2.

Table 4.1. nmap options used for the functional test

Option Description

-sS TCP SYN Scan
-sU UDP Scan
-pT:1-1024,44818,

U:1-1024,2222,44818
Scan specified TCP/UDP ports

-PE ICMP Echo probes
-PP ICMP Timestamp Probes

-A
Enable OS detection, version detection,
script scanning, and traceroute

-script "enip-info"
Use the NSE script ”enip-info”
(sends the ListIdentity command)

-T4 Aggressive timing
-vv Very verbose output

28

Table 4.2. wget options used for the functional test

Option Description

-e robots=off Ignore the ’disallow’ directives in robots.txt

--user-agent="Mozilla/5.0

(Windows NT 6.3;

rv:36.0)Gecko/20100101

Firefox/36.0"

The L61 requires iframes, determined
by checking the user agent. It redirects
the default ”Wget/1.13.4 (linux-gnu)” to
an error page, so the –user-agent switch
fools the L61 into serving up the web
page to a Firefox browser.

--max-redirect=1
Limits the maximum number of redirections
to one to keep the test within scope.

4.2.2 Performance Test.

The second test uses the Python performance testing script and the results from

pilot study 3 to evaluate the performance of hosting Honeyd+ on the PC and Rasp-

berry Pi platforms. The purpose of the test is to assess the impact of multiple

simultaneous connections to the PLC.

The performance test investigates the error rates, according to Equation 3.1, when

varying the factor level combinations of platform, protocol, and data rate. The re-

sponse variable is the ErrorRate, as defined in the pilot study. ErrorRate is as-

sessed according to the 25% threshold established in the pilot study, and the outcome

is expected to be consistent with the observations from the pilot study. Table 4.3

illustrates the experimental design, consisting of (1×3×2×Data RateL61)+(1×3×

2×Data RateCP1L) for a total of 48 factor-level combinations. The additional factor

(Data Rate) is being treated as a continuous variable, but is measured at discrete

intervals constrained by the fixed aggregate data rate.

The data rate is denoted as threads × requests per second (per thread). Each

thread represents a TCP connection to the PLC from the attacker, either simultaneous

connections directly to the PLC or through separate Honeyd+ hosts. There are five

levels for the L61 data rate, however there are only 3 levels for the CP1L because of

29

the constraints discovered in the pilot study (e.g., maximum number of EtherNet/IP

sessions and the limited number of HTTP requests that it could handle). The test is

an incomplete factorial design, with replications because the levels of Data Rate are

not equally represented in all factor-level combinations, due to the limitations of the

factors PLC and Protocol.

The aggregate data rate is fixed to the values determined by pilot study 3 (Table

3.4). Each level of the variable Data Rate will increase the number of threads, while

lowering the data rate per thread to maintain the same aggregate rate. The number of

threads×data rate per thread is simply referred to as “rate” or “number of threads”

for the remainder of this research.

Each protocol, platform, and number of threads combination is measured 50 times

(n = 50) for a duration of 30 seconds each. To reduce bias, the PLC is rebooted prior

to starting each platform× rate measurement, and the order that the measurements

are performed is randomized. Each experiment is repeated three times (r = 3) for a

total of N = 7200 measurements.

30

Table 4.3. Experimental of factors and levels.

Factor Experiment 1
PLC
(categorical)

CP1L

Platform
(categorical)

Baseline-CP1L
PC-CP1L
Pi-CP1L

Protocol
(categorical)

EtherNet/IP HTML

Data Rate*
(interval)

1 × 80
2 × 40
4 × 20

1 × 20
2 × 10
4 × 5

Aggregate
Data Rate

80 20

Factor Experiment 2
PLC
(categorical)

L61

Platform
(categorical)

Baseline-L61
PC-L61
Pi-L61

Protocol
(categorical)

EtherNet/IP HTML

Data Rate*
(interval)

4 × 75
5 × 60
12 × 25
10 × 30
20 × 15

1 × 50
2 × 25
5 × 10
10 × 5
25 × 2

Aggregate
Data Rate

300 50

*fixed data rate, in requests per second
denoted as Threads×Rate

31

4.3 Limitations

There are some limitations to consider prior to implementing Honeyd+. First,

the search and replace functionality was tested on protocols that use length-based

error checking, such as EtherNet/IP. Protocols that use encrypted or compressed

communications are not supported. Protocol-specific algorithms, such as error check-

ing, encryption, and compression could potentially be incorporated into the Honeyd+

source code, but is not in the scope of this research.

Provos demonstrated that a traditional implementation of Honeyd could support

2,000 TCP requests per second among 65,536 hosts [24]. The pilot study showed that

PLCs can support significantly less connections, depending on the manufacturer,

protocol, and model. Additionally, since multiple Honeyd+ hosts communicate with

a single PLC, any modifications or degradation of the PLC will immediately reflect

on all of the Honeyd+ hosts.

32

V. Results and Analysis

The functional and performance tests completed successfully without complica-

tions, or discernible errors. The functional test demonstrated the authenticity of

Honeyd+ in all of the tested cases. The performance test focused on the targetability

characteristic of Honeyd+ and was successful in the lower data rates for the Ether-

Net/IP protocol, however error rates at the higher data rates were not optimal. The

HTTP protocol performance was inconclusive. Section 5.1 discusses the results of the

functional test, and Section 5.2 discusses the results of the performance test.

5.1 Functional Test

Advertising a subnet of 75 Honeyd+ hosts with the five search terms in Figure

5.1 (e.g., ipaddr, ethaddr, hostname, serial, hex) produced similar results as in Figure

3.1. Deeper examination of the nmap port enumeration and OS fingerprint, inspection

of the web pages, and the response from the ListIdentity command demonstrated

accurate and consistent application of the search terms in all cases and all repetitions,

denoted by a Xin Table 5.1. Figures 5.2, 5.3, and 5.4 highlight the changes on one of

the Honeyd+ hosts compared to the physical PLC on each of the tools tested.

33

Table 5.1. Results of functional test

Device Platform Protocol
nmap
enum

nmap port scan
+OS fingerprint

wget
nmap NSE
enip-info

CP1L Baseline EtherNet/IP X X X X
HTML X X X X

PC EtherNet/IP X X X X
HTML X X X X

Pi EtherNet/IP X X X X
HTML X X X X

L61 Baseline EtherNet/IP X X X X
HTML X X X X

PC EtherNet/IP X X X X
HTML X X X X

Pi EtherNet/IP X X X X
HTML X X X X
(X= Accurate and consistent application of all search terms)

Figure 5.1. Search terms used in the authenticity test.

34

Figure 5.2. nmap port enumeration and fingerprint: The actual PLC (left) and the
Honeyd+ host response (right).

35

Figure 5.3. Web page response: the actual PLC web page (left) and the Honeyd+ host
web page(right).

Figure 5.4. The ListIdentity (0x0063) command via nmap NSE script: The actual PLC
(left) and the Honeyd+ host response (right).

36

5.2 Performance Test

Overall, the EtherNet/IP protocol had an increased mean error rate at each level

across all of the platforms as the number of connections increased, despite the constant

aggregate data rate. For the HTTP protocol, the average mean error rate on the

L61 was higher–yet nearly identical–on the Raspberry Pi and PC platform than the

Baseline. The mean error rate for HTTP protocol on the CP1L was approximately

88% across all platforms, which is consistent with observations from the pilot test.

A summary of the results is shown Tables 5.2 and 5.3 and are plotted on interaction

plots in Figures 5.6-5.8; verbose data tables are in Appendix D. With the exception

of the CP1L-Baseline platform, the variances were all <1%.

Table 5.2. Summarized mean error rates for the CP1L

ENIP
(80)

Physical PLC
no Honeyd

Honeyd
on PC

Honeyd on
Raspberry Pi

HTTP
(20)

Physical PLC
no Honeyd

Honeyd
on a PC

Honeyd on
Raspberry Pi

1x80 0.00% 0.00% 0.00% 1x20 87.66% 88.66% 88.73%
2x40 3.45% 0.18% 2.40% 2x10 85.77% 88.87% 89.14%
4x20 11.04% 28.36% 29.51% 4x5 86.77% 88.68% 88.93%

Total (avg) 4.83% 9.51% 10.64% Total (avg) 86.74% 88.74% 88.93%

Table 5.3. Summarized mean error rates for the L61

ENIP
(300)

Physical PLC
no Honeyd

Honeyd
on PC

Honeyd on
Raspberry Pi

HTTP
(50)

Physical PLC
no Honeyd

Honeyd
on a PC

Honeyd on
Raspberry Pi

4x75 9.3% 11.4% 7.9% 1x50 0.7% 32.4% 32.1%
5x60 14.4% 16.4% 12.7% 2x25 0.1% 32.5% 32.2%
12x25 29.5% 30.1% 27.4% 5x10 14.1% 32.3% 31.9%
10x30 35.1% 36.2% 33.4% 10x5 18.0% 32.3% 31.9%
20x15 58.7% 63.9% 60.1% 25x2 54.1% 58.5% 57.4%

Total (avg) 29.4% 31.6% 28.3% Total (avg) 17.4% 37.6% 37.1%

5.2.1 Evaluation.

Evaluating the error rates of on the CP1L with the HTTP protocol (Figure 5.5)

against the 25% threshold showed a consistent error rate of approximately 88% on

all three platforms. The pilot study noted an approximate 60% error rate for the

37

CP1L/HTTP combination; the outcome is higher than the 25% threshold is expected.

Figure 5.5. Interaction plots of error rate versus number of threads for the CP1L PLC
and HTTP protocol.

The HTTP protocol on the L61 (Figure 5.6) was inconsistent with the expectations

from the pilot study. The error rate on the baseline platform increased, though

remaining under the 25% threshold, until the highest rate (25 × 2). However, the

error rates for the Honeyd+ platforms were consistently 32% until reaching the 25×2

rate. The interaction plot indicates that there was no effect between either of the

Honeyd+ platforms and the physical PLC for the 1 × 50 through the 10 × 5 rates.

The EtherNet/IP Protocol on the CP1L (Figure 5.7) performed slightly better

than the pilot study, with the 1 × 80 and the 2 × 40 rates having error rates less

then 5%, however, the error rates for both of the Honeyd+ platforms exceeded the

25% threshold when the rate increased to 4 × 20. At the 4 × 20 rate, the CP1L PLC

still performed well under the threshold, with an 11% error rate. An observation for

further study is that the variance on the CP1L-Baseline seems to expand as the rate

38

Figure 5.6. Interaction plots of error rate versus number of threads for the L61 PLC
and HTTP protocol.

increases, which does not occur with the CP1L Honeyd+ platforms or on the L61

platforms.

The EtherNet/IP Protocol on the L61 (Figure 5.8) showed a consistent increase

in error rate on all three platforms as the rate increased. Most noteworthy is that the

Raspberry Pi platform outperformed the baseline and the PC platforms on this test.

While this thesis offers no explanation for this finding, it should be further studied.

Overall, as the rate increased, all four PLC and rate combinations performed less

optimally than expected. The conclusion is that a PLC can support approximately 5

simultaneous connections—10 in the best case—at the 25% error rate threshold. The

results of the performance evaluation are summarized in Table 5.4.

39

Figure 5.7. Interaction plots of error rate versus number of threads for the CP1L PLC
and EtherNet/IP protocol.

Figure 5.8. Interaction plots of error rate versus number of threads for the L61 PLC
and EtherNet/IP protocol.

40

Table 5.4. Results of performance test.

Protocol Platform 1x80 2x40 4x20
EtherNet / IP CP1L-Baseline X X X

CP1L-PC X X X
CP1L-Pi X X X

1x20 2x10 4x5
HTTP CP1L-Baseline X X X

CP1L-PC X X X
CP1L-Pi X X X

Protocol Platform 4x75 5x60 10x30 12x25 20x15
EtherNet / IP L61-Baseline X X X X X

L61-PC X X X X X
L61-Pi X X X X X

1x50 2x25 5x10 10x5 25x2
HTTP L61-Baseline X X X X X

L61-PC X X X X X
L61-Pi X X X X X

X= Error Rate <25% X = Error Rate>25%

41

VI. Conclusion

This chapter summarizes the overall conclusions of the research. Section 6.1

presents conclusions based on the results and analysis from Chapter 5. Section 6.2

discusses the significance of this research. Section 6.3 discusses recommendations and

approaches for future research.

6.1 Research Conclusions

The tests conducted in this research demonstrated that Honeyd+ could represent

75 authentic PLCs on both a laptop PC and a raspberry Pi, each containing 5 search

terms. Such a scale demonstrates significant cost savings over purchasing physical

equipment, and demonstrates targetability and authenticity. The results of the per-

formance test of Honeyd+ identified potential targetability limitations, though it is

still a cost saving alternative to deploying multiple physical honeypots.

6.1.1 Functional Test.

The functional test demonstrated that Honeyd+ could accurately identify five

search terms (IP Address, MAC Address, Host name, Serial Number, and Product

Name) and accurately replace them with appropriate values. The resulting decoys

have unique and consistent identities from the attacker’s perspective, resulting in a

high degree of authenticity.

6.1.2 Performance Test.

The PLCs supported less than ten simultaneous connections at its maximum

effective data rate, as defined and determined by a pilot study. Further study with

different devices, data rates, and protocols may discover a testing design with more

42

optimal results. A Honeyd+ host does not communicate with the PLC unless an

attacker communicates with the port that is proxied to the PLC (i.e., Honeyd+ bears

a majority of the load for a port scan and OS fingerprint). Furthermore, performance

analysis revealed that the low-cost Raspberry Pi performed about the same–or better–

as a high cost laptop PC, making the Raspberry Pi the preferrable option to a low-cost

honeypot solution.

6.1.3 Research Hypothesis.

The results of the functional test confirms the hypothesis that Honeyd+ presents

an accurate representation of many PLCs. Figures 5.6-5.8 illustrates different perfor-

mance behaviors, based on protocol and device manufacturer. The hypotheses that

the performance limitations of a PLC is the limiting factor of performance in the

honeypot implementation is confirmed, though the practical impact is inconclusive.

Further study is required to quantify the impact to a production implementation.

An interesting contradiction to the initial research hypothesis is that the Rasperry Pi

platform performed equal to or better than the PC platform in all four tested cases.

6.2 Significance of Research

The authenticity of a physical PLC is ideal however, a single PLC can cost over

$5,000. The cost of implementing multiple highly authentic physical PLCs as honey-

pots quickly becomes prohibitive, which is a constraint on targetability. In contrast,

emulators can be replicated on various low-cost hardware platforms to gain a high

degree of targetability, but their authenticity is constrained to the features and be-

haviors contained in the programming code of the emulator. Lack of a standard

ICS virtualization environment further restricts the options to create ICS honeypots

that have a high degree of of authenticity and targetability with minumum risks and

43

costs. This research demonstrated a technique that achieves both authenticity and

targetability, with a cost savings ranging from 5 honeypots (worst case) to 75 (best

case) decoy PLCs for the cost of a single PLC and a Raspberry Pi.

6.3 Future Work

6.3.1 Test Different PLCs Manufacturer Protocols.

This research tested the function and performance for two protocols each on two

different PLCs. Examination of additional devices and protocols using the method-

ology in this research can create a more comprehensive database of PLC templates

and may discover devices that perform better under a variety of circumstances.

6.3.2 Develop Additional Search Term Capabilities.

Honeyd+ demonstrated five basic search terms that are common to most net-

worked devices. Additional functions can be inserted into the source code to support

protocol specific algorithms (e.g., error checking, encryption, and compression) or

other desired data points for a specific implementation.

6.3.3 Compensate for the Limitations of the PLC.

Additional modifications or alternate techniques can compensate for the limita-

tions of the PLC. For example, substituting a script or separate web server for the

HTTP protocol. Another example would incorporating some form of caching func-

tionality or a stateful memory program to reduce the burden of repetitive communi-

cation with the PLC. Finally, it is possible to configure templates to proxy to more

than one PLC for a load balancing enhancement, although this technique could dilute

the desired cost benefits.

44

6.3.4 Deploy on a Network.

Honeyd+ clearly has the potential application as the research honeypot. Honeyd+

inherited the additional capabilities of native Honeyd, such as simulating the routing

of multiple network segments. Other ICS components, such as HMI, sensors, or

actuators could be added to create a more comprehensive honeynet.

Bodenheim recommended deployment on an Amazon EC2 platform. Honeyd+

makes it feasible to pursue this research effort, assuming the additional cost of hosting

and IP space is acceptable.

Another potential application for Honeyd+ is a honeynet of decoys on a produc-

tion network. A Honeyd+ template on Raspberry Pi computers installed at multiple

remote sites could cloak the real assets while using one centrally located PLC (see

Figure 6.1). Such an application would increase an attacker’s chance of interact-

ing with a honeypot during the reconnaissance and enumeration stages, giving asset

owners an opportunity to respond to the intrusion.

Logging is an important consideration when deploying such a honeynet. Specific

logging capabilities were not considered in this research, however, Honeyd+ includes

the simple logging capability from native Honeyd that catalogs attempted connections

by source IP, source port, and operating system fingerprint. More verbose monitoring

on the centrally located PLC with available open source tools, such as Wireshark,

would enhance the logging with a full packet capture ability. A management tool,

such as Honeywall [8], can centralize the management of multiple honeypots into a

web-based interface with report generation capabilities.

45

Figure 6.1. Potential implementation of Honeyd+ as a production honeynet.

46

Appendix A. Nmap Results from Pilot Study 1

Verbose nmap fingerprint and enumeration of the CP1L PLC

Nmap 6.40 scan initiated Mon Dec 1 19:59:26 2014 as: nmap -e eth0 -oA plc_scan_106 -sC -sS -sU -T4 -A -vv

-PE -PP -p* --script discovery --stats -every 30s 172.16.0.106

Pre -scan script results:

| broadcast -eigrp -discovery:

|_ ERROR: Couldn ’t get an A.S value.

| broadcast -igmp -discovery:

| 172.16.0.200

| Interface: eth0

| Version: 2

| Group: 224.0.0.252

| Description: Link -local Multicast Name Resolution (rfc4795)

| 172.16.0.202

| Interface: eth0

| Version: 2

| Group: 224.0.0.251

| Description: mDNS

| 172.16.0.200

| Interface: eth0

| Version: 2

| Group: 239.255.255.250

| Description: Organization -Local Scope (rfc2365)

|_ Use the newtargets script -arg to add the results as targets

| broadcast -ping:

| IP: 172.16.0.108 MAC: 00:1d:9c:a3:dc:8d

| IP: 172.16.0.106 MAC: 00:1d:4b:f0 :22:66

|_ Use --script -args=newtargets to add the results as targets

| http -icloud -findmyiphone:

|_ ERROR: No username or password was supplied

| http -icloud -sendmsg:

|_ ERROR: No username or password was supplied

| targets -asn:

|_ targets -asn.asn is a mandatory parameter

| targets -sniffer: Sniffed 5 address(es).

| 224.0.0.1

| 172.16.0.108

| 172.16.0.106

| 172.16.0.200

|_239 .255.255.250

Increasing send delay for 172.16.0.106 from 0 to 5 due to 71 out of 177 dropped probes since last increase.

Nmap scan report for 172.16.0.106

Host is up (0.0021s latency).

Scanned at 2014 -12 -01 19:59:38 EST for 737s

Not shown: 19850 closed ports

PORT STATE SERVICE VERSION

80/ tcp open http?

|_http -chrono: Request times for /; avg: 16000.65 ms; min: 16000.52 ms; max: 16000.83 ms

|_http -comments -displayer: Couldn ’t find any comments.

|_http -default -accounts: [ERROR] HTTP request table is empty. This should not happen since we at least made

one request.

|_http -drupal -modules: ERROR: Script execution failed (use -d to debug)

47

|_http -google -malware: [ERROR] No API key found. Update the variable APIKEY in http -google -malware or set it

in the argument http -google -malware.api

| http -grep:

|_ ERROR: Argument http -grep.match was not set

| http -headers:

|_ (Request type: GET)

| http -sitemap -generator:

| Directory structure:

| Longest directory structure:

| Depth: 0

| Dir: /

| Total files found (by extension):

|_

|_http -traceroute: ERROR: Script execution failed (use -d to debug)

| http -vhosts:

|_28 names had status ERROR

|_http -waf -detect: [ERROR] Initial HTTP request failed

|_http -wordpress -plugins: ERROR: Script execution failed (use -d to debug)

9999/ tcp open abyss?

44818/ tcp open EtherNet/IP -2?

69/ udp open tftp?

2222/ udp open|filtered msantipiracy

30718/ udp open|filtered unknown

44818/ udp open|filtered EtherNet/IP -2

3 services unrecognized despite returning data. If you know the service/version , please submit the following

fingerprints at http ://www.insecure.org/cgi -bin/servicefp -submit.cgi :

============== NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============

SF-Port80 -TCP:V=6.40%I=7%D=12/1% Time =547 D0F42%P=x86_64 -unknown -linux -gnu%r

SF:(GetRequest ,38F,"HTTP /1\.1\ x20200\r\nContent -type:\ x20text/html\r\n\r\n

SF:<HTML ><HEAD ><TITLE >Omron\x20CP1W -EIP61\x20Configuration </TITLE ></HEAD ><

SF:BODY ><H2 >CP1W -EIP61\x20Configuration </H2 ><FORM\x20action =\" postcfg \.cgi

SF:\"\ x20method =\" post\">\n<TABLE >\n<TR >\n<TD>IP\x20Address :</TD >\n<TD><in

SF:put\x20type=text\x20name =\" ipaddr \"\ x20size =15\ x20maxlength =15\ x20value

SF :=172\.16\.0\.106 > </TD >\n</TR >\n<TR >\n<TD >Subnet\x20Mask:</TD >\n<TD><inp

SF:ut\x20type=text\x20name =\" subnet \"\ x20size =15\ x20maxlength =15\ x20value=

SF :255\.255\.255\.0 > </TD >\n</TR >\n<TR >\n<TD >Gateway:</TD >\n<TD ><input\x20t

SF:ype=text\x20name =\" gateway \"\ x20size =15\ x20maxlength =15\ x20value =0\.0\.

SF:0\.0></TD >\n</TR >\n<TR >\n<TD>FINS\x20UDP\x20Port:</TD >\n<TD ><input\x20t

SF:ype=text\x20name =\" finsudp \"\ x20size =15\ x20maxlength =5\ x20value =9600></

SF:TD >\n</TR >\n</TABLE >\n<P>Behavior\x20on\x20Loss\x20of\x20I/O\x20Connect

SF:ion:
\n<input\x20type=radio\x20name =\" lost \"\ x20value =\" same \"\x20 >C

SF:IO\x20Outputs\x20Stay\x20the\x20Same
\n<input\x20type=radio\x20name=

SF:\" lost \"\ x20value =\" zero \"\ x20checked >CIO\x20Outputs\x20Set\x20to\x20Ze

SF:ro
\n
<INPUT\x20type =\" submit \"\ x20value =\"\ x20Apply\x20Setting\x

SF:20\"></FORM ></B");

============== NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============

SF-Port9999 -TCP:V=6.40%I=7%D=12/1% Time =547 D0F42%P=x86_64 -unknown -linux -gnu

SF:%r(NULL ,8F,"\xff\xfb\x03\xff\xfd\x18\r\n\r\n\0MAC\x20addre\xff\xfb\x03s

SF:s\x2000:1D:4B:F0 :22:66\r\nSoftware\x20version\x201 \.01\ x20\(Oct\x20\x20

SF:5\ x202011 \)\x20CP1W -EIP61\r\n\r\n\0Setup\x20Menu\r\n\r\nPress\x20Enter\

SF:x20to\x20go\x20into\x20Setup\x20Mode ")%r(GetRequest ,92,"\ xff\xfb\x03\xf

SF:f\xfd\x18\r\n\r\n\0MAC\x20addre\xff\xfb\x03ss\x2000 :1D:4B:F0 :22:66\r\nS

SF:oftware\x20version\x201 \.01\ x20\(Oct\x20\x205\x202011 \)\x20CP1W -EIP61\r

SF:\n\r\n\0Setup\x20Menu\r\n\r\nPress\x20Enter\x20to\x20go\x20into\x20Setu

48

SF:p\x20Mode \?!\?")%r(HTTPOptions ,2C2 ,"\xff\xfb\x03\xff\xfd\x18\r\n\r\n\0M

SF:AC\x20addre\xff\xfb\x03ss\x2000:1D:4B:F0 :22:66\r\nSoftware\x20version\x

SF :201\.01\ x20\(Oct\x20\x205\x202011 \)\x20CP1W -EIP61\r\n\r\n\0Setup\x20Men

SF:u\r\n\r\nPress\x20Enter\x20to\x20go\x20into\x20Setup\x20Mode\r\n\n\0*\

SF:**\ x20basic\x20parameters\x20\r\n\r\0 Hardware :\ x20Ethernet\x20TPI\r\n\

SF:0IP\x20addr\x20172 \.16\.0\.106\r\n\0 Netmask\x20255 \.255\.255\.0\r\n\0No

SF:\ x20Gateway\x20Set\r\n\r\n\0*****************\ x20Chann

SF:el\x201\x20 *****************\r\n\r\0 Serial\x20Settings

SF:\x20\x20:\ x20115200\x20baud\x20\x20RS232 ,8,N,1\ x20\x20Flow:None\r\n\r\n

SF:\r\n\r\n\r\0 Change\x20Setup :\r\n\0\x20\x200\x20Server\x20configuration\

SF:r\n\r\0\x20\x206\x20debug\r\n\r\0\ x20\x207\x20factory\x20defaults\r\n\r

SF:\0\ x20\x208\x20exit\x20without\x20save\r\n\r\0\ x20\x209\x20save\x20and\

SF:x20exit\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20

SF:Your\x20choice\x20\?\x20\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x0

SF:7\x07\x07\x071\r\n\r\n\r\n\r\0 Change\x20Setup :\r\n\0\x20\x200\x20Server

SF:\ x20configuration\r\n\r\0\x20\x206\x20debug\r\n\r\0\ x20\x207\x20factory

SF:\ x20defaults\r\n\r\0\x20\x208\x20exit\x20without\x20save\r\n\r\0\x20\x2

SF:09\ x20save\x20and\x20exit\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x

SF:20\ x20\x20\x20\x20Your\x20choice\x20\?\x20")%r(FourOhFourRequest ,423 ,"\

SF:xff\xfb\x03\xff\xfd\x18\r\n\r\n\0MAC\x20addre\xff\xfb\x03ss\x2000 :1D:4B

SF::F0 :22:66\r\nSoftware\x20version\x201 \.01\ x20\(Oct\x20\x205\x202011 \)\x

SF:20CP1W -EIP61\r\n\r\n\0Setup\x20Menu\r\n\r\nPress\x20Enter\x20to\x20go\x

SF:20 into\x20Setup\x20Mode\r\n\n\0***\ x20basic\x20parameters\x20\r\n\r\

SF:0 Hardware :\ x20Ethernet\x20TPI\r\n\0IP\x20addr\x20172 \.16\.0\.106\r\n\0N

SF:etmask\x20255 \.255\.255\.0\r\n\0No\x20Gateway\x20Set\r\n\r\n\0****\

SF :*************\ x20Channel\x201\x20 *************

SF :****\r\n\r\0 Serial\x20Settings\x20\x20:\ x20115200\x20baud\x20\x20RS

SF:232,8,N,1\ x20\x20Flow:None\r\n\r\n\r\n\r\n\r\0 Change\x20Setup :\r\n\0\x2

SF:0\ x200\x20Server\x20configuration\r\n\r\0\ x20\x206\x20debug\r\n\r\0\x20

SF:\x207\x20factory\x20defaults\r\n\r\0\x20\x208\x20exit\x20without\x20sav

SF:e\r\n\r\0\ x20\x209\x20save\x20and\x20exit\x20\x20\x20\x20\x20\x20\x20\x

SF:20\ x20\x20\x20\x20\x20\x20\x20\x20Your\x20choice\x20 \?\x20\r\n\r\n\r\n\

SF:r\0 Change\x20Setup :\r\n\0\x20\x200\x20Server\x20configuration\r\n\r\0\x

SF:20\ x206\x20debug\r\n\r\0\x20\x207\x20factory\x20defaults\r\n\r\0\x20\x2

SF:08\ x20exit\x20without\x20save\r\n\r\0\ x20\x209\x20save\x20and\x20exit\x

SF:20\ x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20Your\x20c

SF:hoice\x20\?\x20\x07\x07\x07\x07\x07\x07\x07\x07\x07\x0720\x07\x07\x07\x

SF:07\ x07\x072\x07\x07\x07\x07\x07\x076\x07\x07\x07\x07\r\n\r\n\r\n\r\0Cha

SF:nge\x20Setup :\r\n\0\ x20\x200\x20Server\x20configuration\r\n\r\0\x20\x20

SF:6\ x20debug\r\n\r\0\ x20\x207\x20factory\x20defaults\r\n\r\0\x20\x208\x20

SF:exit\x20without\x20save\r\n\r\0\x20\x209\x20save\x20and\x20exit\x20\x20

SF:\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20Your\x20choice\

SF:x20\?\x20\x07\x07\x07\x072\x07\x07\x07\x07\x07\x07\x07\x07\x07\x071\r\n

SF:\r");

============== NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============

SF-Port69 -UDP:V=6.40%I=7%D=12/1% Time =547 D0F41%P=x86_64 -unknown -linux -gnu%r

SF:(DNSStatusRequest ,16 ,"\0\ x05 \0\ x04Invalid\x20Opcode :\x200 \0")%r(RPCChec

SF:k,1A,"\0\ x05\0\ x04Invalid\x20Opcode :\ x2029438 \0")%r(DNSVersionBindReq ,1

SF:6 ,"\0\ x05\0\ x04Invalid\x20Opcode :\x206 \0")%r(NBTStat ,1B,"\0\ x05\0\ x04In

SF:valid\x20Opcode :\x20 -32528\0")%r(Help ,1A,"\0\ x05 \0\ x04Invalid\x20Opcode

SF::\ x2026725 \0")%r(SIPOptions ,1A ,"\0\ x05 \0\ x04Invalid\x20Opcode :\ x2020304

SF:\0");

MAC Address: 00:1D:4B:F0 :22:66 (Grid Connect)

No exact OS matches for host (If you know what OS is running on it , see http :// nmap.org/submit/).

49

TCP/IP fingerprint:

OS:SCAN(V=6.40%E=4%D=12/1% OT=80%CT=1%CU=1%PV=Y%DS=1%DC=D%G=Y%M=001 D4B%TM=54

OS:7 D11DB%P=x86_64 -unknown -linux -gnu)SEQ(TS=U)ECN(R=N)T1(R=N)T2(R=N)T3(R=N)

OS:T4(R=N)T5(R=N)T6(R=N)T7(R=N)U1(R=Y%DF=N%T=40% IPL =38%UN=0% RIPL=G%RID=G%RI

OS:PCK=G%RUCK=G%RUD=G)U1(R=N)IE(R=N)

Network Distance: 1 hop

Host script results:

|_dns -brute: Can ’t guess domain of "172.16.0.106"; use dns -brute.domain script argument.

| firewalk:

| HOP HOST PROTOCOL BLOCKED PORTS

|_0 172.16.0.203 udp 2222 ,30718 ,44818

|_ipidseq: Unknown

| qscan:

| PORT FAMILY MEAN (us) STDDEV LOSS (%)

| 1 0 0.00 -0.00 100.0%

| 69 1 0.00 -0.00 100.0%

| 80 2 0.00 -0.00 100.0%

| 9999 3 0.00 -0.00 100.0%

|_44818 4 0.00 -0.00 100.0%

|_sniffer -detect: Unknown (tests: "________ ")

| traceroute -geolocation:

| HOP RTT ADDRESS GEOLOCATION

|_ 1 2.12 172.16.0.106 - ,-

TRACEROUTE

HOP RTT ADDRESS

1 2.12 ms 172.16.0.106

Read data files from: /usr/bin /../ share/nmap

OS and Service detection performed. Please report any incorrect results at http :// nmap.org/submit/ .

Nmap done at Mon Dec 1 20:11:55 2014 -- 1 IP address (1 host up) scanned in 749.34 seconds

Verbose nmap fingerprint and enumeration of the L61 PLC

Nmap 6.40 scan initiated Tue Dec 2 22:26:18 2014 as: nmap -e eth0 -oA plc_scan_105 -sC -sS -sU -T4 -A -vv

-PE -PP -p* --script discovery , enip -info --stats -every 30s 172.16.0.105

Pre -scan script results:

| broadcast -eigrp -discovery:

|_ ERROR: Couldn ’t get an A.S value.

| broadcast -igmp -discovery:

| 172.16.0.202

| Interface: eth0

| Version: 2

| Group: 224.0.0.251

| Description: mDNS

|_ Use the newtargets script -arg to add the results as targets

| broadcast -ping:

| IP: 172.16.0.108 MAC: 00:1d:9c:a3:dc:8d

| IP: 172.16.0.105 MAC: 00:1d:9c:be :67:93

|_ Use --script -args=newtargets to add the results as targets

| http -icloud -findmyiphone:

|_ ERROR: No username or password was supplied

50

| http -icloud -sendmsg:

|_ ERROR: No username or password was supplied

| targets -asn:

|_ targets -asn.asn is a mandatory parameter

| targets -sniffer: Sniffed 6 address(es).

| 172.16.0.105

| 172.16.0.108

| 224.0.0.13

| 224.0.0.1

| 172.16.0.202

|_224 .0.0.251

Nmap scan report for 172.16.0.105

Host is up (0.0030s latency).

Scanned at 2014 -12 -02 22:26:29 EST for 302s

Not shown: 19853 closed ports

PORT STATE SERVICE VERSION

80/ tcp open http GoAhead -Webs httpd

| http -backup -finder:

| Spidering limited to: maxdepth =3; maxpagecount =20; withinhost =172.16.0.105

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ editlimits.asp~

| http ://172.16.0.105/ navtree /../. copy./ editlimits.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ editlimits.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ editlimits.asp

| http ://172.16.0.105/ navtree /../../ editlimits.asp.1

| http ://172.16.0.105/ navtree /../../ editlimits.asp .~1~

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ diagover.asp~

| http ://172.16.0.105/ navtree /../. copy./ diagover.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ diagover.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ diagover.asp

| http ://172.16.0.105/ navtree /../../ diagover.asp.1

| http ://172.16.0.105/ navtree /../../ diagover.asp .~1~

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ dataviews.asp~

| http ://172.16.0.105/ navtree /../. copy./ dataviews.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ dataviews.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ dataviews.asp

| http ://172.16.0.105/ navtree /../../ dataviews.asp.1

| http ://172.16.0.105/ navtree /../../ dataviews.asp .~1~

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ msgconnect.asp~

| http ://172.16.0.105/ navtree /../. copy./ msgconnect.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ msgconnect.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ msgconnect.asp

| http ://172.16.0.105/ navtree /../../ msgconnect.asp.1

| http ://172.16.0.105/ navtree /../../ msgconnect.asp .~1~

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ serverlog.asp~

| http ://172.16.0.105/ navtree /../. copy./ serverlog.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ serverlog.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ serverlog.asp

| http ://172.16.0.105/ navtree /../../ serverlog.asp.1

| http ://172.16.0.105/ navtree /../../ serverlog.asp .~1~

51

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ backupRestore.html~

| http ://172.16.0.105/ navtree /../. copy./ backupRestore.html

| http ://172.16.0.105/ navtree /../ Copy of ../ backupRestore.html

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ backupRestore.html

| http ://172.16.0.105/ navtree /../../ backupRestore.html.1

| http ://172.16.0.105/ navtree /../../ backupRestore.html .~1~

| http ://172.16.0.105/ navtree /../.. bak

| http ://172.16.0.105/ navtree /../../ diagnetwork.asp~

| http ://172.16.0.105/ navtree /../. copy./ diagnetwork.asp

| http ://172.16.0.105/ navtree /../ Copy of ../ diagnetwork.asp

| http ://172.16.0.105/ navtree /../ Copy (2) of ../ diagnetwork.asp

| http ://172.16.0.105/ navtree /../../ diagnetwork.asp.1

|_ http ://172.16.0.105/ navtree /../../ diagnetwork.asp .~1~

|_http -chrono: Request times for /index.html; avg: 271.74 ms; min: 234.53 ms; max: 314.03 ms

| http -comments -displayer:

| Spidering limited to: maxdepth =3; maxpagecount =20; withinhost =172.16.0.105

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 141

| Comment:

| <!-- * * * CONTROLBUS * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 27

| Comment:

| <!-- Start tab background -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 237

| Comment:

| <!-- * * * BROWSE CHASSIS * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 188

| Comment:

| <!-- <a class=" entry" onclick =" highlightView(this);" onmouseover =" overColor(this , ’#ffffff ’);"

onmouseout =" outColor(this , ’#bcbcbc ’);" href ="../ developersettings.asp" target ="home"><img src ="../

images/paper.gif" alt="">& nbsp;Developer Settings

| -->

|

| Path: http ://172.16.0.105/ css/radevice.css

| Line number: 90

| Comment:

| /* Sortable table headers */

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 191

| Comment:

| <!-- * * * DEVICE CONFIGURATION * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 127

| Comment:

52

| <!-- * * * SOCKET OBJECT * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 86

| Comment:

| <!-- Begin right side column -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 92

| Comment:

| <!--

| <table border =0 width ="100" height ="100" >

| <tr><td valign ="top">

|

| <img name="

l1" id="l1" src ="/ images/display /0.bmp"><img name="

l3" id="l3" src ="/ images/display /0.bmp">

|

| <

img name="llink" id="llink" src="/ images/display/led_off.bmp"><img name="lmod" id="lmod" src="/ images/

display/led_off.bmp">

|

| </td ></tr >

| </table >

| -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 241

| Comment:

| <!-- * * * MESSAGE BOARD * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 152

| Comment:

| <!-- End body background -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 58

| Comment:

| <!-- * * * DATA VIEWS * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 9

| Comment:

| <!--<script type="text/javascript" language =" JavaScript" src="/ scripts/XMLDOMWrapper.js"></script >

| <script type="text/javascript" language =" JavaScript" src="/ scripts/display.js"></script >

| -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 16

| Comment:

| <!-- Start tabs -->

|

| Path: http ://172.16.0.105/ home.asp

53

| Line number: 26

| Comment:

| <!-- End tabs -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 219

| Comment:

| <!-- * * * SERVER MANAGEMENT * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 135

| Comment:

| <!-- End right side column -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 206

| Comment:

| <!-- * * * USER MANAGEMENT * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 245

| Comment:

| <!-- * * * EMAIL * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 242

| Comment:

| <!--

| <a class=" entry" onclick =" highlightView(this);" onmouseover =" overColor(this , ’#ffffff ’);"

onmouseout =" outColor(this , ’#bcbcbc ’);" id="/ msgboard/index.html" href ="../ msgboard/index.html" target

="home">& nbsp;Message Board

| -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 176

| Comment:

| <!-- * * * ADMINISTRATIVE SETTINGS * * * -->

|

| Path: http ://172.16.0.105/ home.asp

| Line number: 140

| Comment:

| <!-- Do not modify below this point -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 109

| Comment:

| <!-- * * * NETWORK * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 155

| Comment:

| <!-- * * * MISCELLANEOUS * * * -->

|

| Path: http ://172.16.0.105/ home.asp

54

| Line number: 33

| Comment:

| <!-- Body starts here -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 96

| Comment:

| <!-- * * * ETHERNET/IP * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 86

| Comment:

| <!-- * * * ADVANCED DIAGNOSTICS * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 71

| Comment:

| <!-- * * * DIAGNOSTICS * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 54

| Comment:

| <!-- * * * HOME * * * -->

|

| Path: http ://172.16.0.105/ navtree/navtree.html

| Line number: 186

| Comment:

|_ <!-- * * * DEVELOPER SETTINGS * * * -->

|_http -drupal -modules:

| http -email -harvest:

| Spidering limited to: maxdepth =3; maxpagecount =20; withinhost =172.16.0.105

|_ abtech@prime -controls.com

| http -enum:

|_ /home.asp: Possible admin folder

|_http -favicon: Unknown favicon MD5: D9B704524A6DBEC6E55F47CC295BBB3A

|_http -google -malware: [ERROR] No API key found. Update the variable APIKEY in http -google -malware or set it

in the argument http -google -malware.api

| http -grep:

|_ ERROR: Argument http -grep.match was not set

| http -headers:

| Date: FRI JAN 02 02:45:54 1970

| Server: GoAhead -Webs

| Last -modified: SUN DEC 30 15:14:14 1979

| Content -length: 1177

| Content -type: text/html; charset=utf -8

| Connection: Close

|

|_ (Request type: GET)

| http -php -version: Logo query returned unknown hash 851 c258b740acece42f24de966ada285

|_Credits query returned unknown hash 851 c258b740acece42f24de966ada285

| http -sitemap -generator:

| Directory structure:

| /

| asp: 2; html: 2

55

| /css/

| css: 1

| /images/

| gif: 3

| /navtree/

| html: 1

| /scripts/

| js: 1

| Longest directory structure:

| Depth: 1

| Dir: /css/

| Total files found (by extension):

|_ asp: 2; css: 1; gif: 3; html: 3; js: 1

| http -title: Rockwell Automation

|_Requested resource was http ://172.16.0.105/ index.html

| http -vhosts:

|_28 names had status 302

| http -waf -detect: IDS/IPS/WAF detected:

|_172 .16.0.105:80/? p4yl04d3=<script >alert(document.cookie)</script >

|_http -wordpress -plugins: nothing found amongst the 100 most popular plugins , use --script -args http -

wordpress -plugins.search=<number|all > for deeper analysis)

44818/ tcp open EtherNet -IP -2

| enip -info:

| Vendor: Rockwell Automation/Allen -Bradley (1)

| Product Name: 1756- EWEB

| Serial Number: 0x00932471

| Device Type: Communications Adapter (12)

| Product Code: 125

| Revision: 5.1

|_ Device IP: 172.16.0.105

2222/ udp open|filtered msantipiracy

44818/ udp open EtherNet -IP -2

| enip -info:

| Vendor: Rockwell Automation/Allen -Bradley (1)

| Product Name: 1756- EWEB

| Serial Number: 0x00932471

| Device Type: Communications Adapter (12)

| Product Code: 125

| Revision: 5.1

|_ Device IP: 172.16.0.105

MAC Address: 00:1D:9C:BE :67:93 (Rockwell Automation)

Device type: general purpose

Running: Wind River VxWorks

OS CPE: cpe:/o:windriver:vxworks

OS details: VxWorks

TCP/IP fingerprint:

OS:SCAN(V=6.40%E=4%D=12/2% OT=80%CT=1%CU=1%PV=Y%DS=1%DC=D%G=Y%M=001 D9C%TM=54

OS:7 E8413%P=x86_64 -unknown -linux -gnu)SEQ(SP=9A%GCD =1%ISR=A1%TI=I%CI=I%TS=1)

OS:OPS(O1=M5B4NW0NNT11%O2=M5B4NW0NNT11%O3=M5B4NW0NNT11%O4=M5B4NW0NNT11%O5=M

OS:5 B4NW0NNT11%O6=M5B4NNT11)WIN(W1 =2000% W2 =2000% W3 =2000% W4 =2000% W5 =2000% W6=

OS :2000) ECN(R=Y%DF=Y%T=40%W=2000%O=M5B4NW0%CC=N%Q=)T1(R=Y%DF=Y%T=40%S=O%A=S

OS:+%F=AS%RD=0%Q=)T2(R=N)T3(R=Y%DF=Y%T=40%W=2000%S=O%A=S+%F=AS%O=M5B4NW0NNT

OS:11%RD=0%Q=)T4(R=Y%DF=N%T=40%W=2000%S=A%A=Z%F=R%O=%RD=0%Q=)T5(R=Y%DF=N%T=

OS:40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=N%T=40%W=0%S=A%A=Z%F=R%O=%RD=0

56

OS:%Q=)T7(R=Y%DF=N%T=40%W=0%S=Z%A=S%F=AR%O=%RD=0%Q=)U1(R=Y%DF=N%T=40% IPL=38

OS:%UN=0% RIPL=G%RID=G%RIPCK=Z%RUCK =0% RUD=G)IE(R=N)

Uptime guess: 1.117 days (since Mon Dec 1 19:43:15 2014)

Network Distance: 1 hop

TCP Sequence Prediction: Difficulty =154 (Good luck!)

IP ID Sequence Generation: Incremental

Host script results:

|_dns -brute: Can ’t guess domain of "172.16.0.105"; use dns -brute.domain script argument.

| firewalk:

| HOP HOST PROTOCOL BLOCKED PORTS

|_0 172.16.0.203 udp 2222

|_ipidseq: Randomized

|_path -mtu: PMTU == 1500

| qscan:

| PORT FAMILY MEAN (us) STDDEV LOSS (%)

| 1 0 988.80 279.05 0.0%

| 80 1 1393.60 337.47 0.0%

| 44818 1 1514.30 468.07 0.0%

|_44818 1 1381.70 276.78 0.0%

| traceroute -geolocation:

| HOP RTT ADDRESS GEOLOCATION

|_ 1 2.98 172.16.0.105 - ,-

TRACEROUTE

HOP RTT ADDRESS

1 2.98 ms 172.16.0.105

Read data files from: /usr/bin /../ share/nmap

OS and Service detection performed. Please report any incorrect results at http :// nmap.org/submit/ .

Nmap done at Tue Dec 2 22:31:31 2014 -- 1 IP address (1 host up) scanned in 313.81 seconds

57

Appendix B. plcloadtest.py code

#!/ usr/bin/python

import os

import struct

import time

import socket

import random

import sys

import select

import logging

import threading

import argparse

IS_AB = True ## True for Allen -Bradley , False for OMRON

IS_CONTROL = True ## True for ControlLogix , False for MicroLogix

CIP_SEND_SIZE = 0 ## SEND_SIZE = msg + hdr

CIP_RECV_SIZE = 0 ## RCV_SIZE = msg + hdr

HDR_SEND_LEN = 0

HDR_RCV_LEN = 0

RCV_WAIT = 5

def SetSizes ():

global CIP_SEND_SIZE

global CIP_RECV_SIZE

global HDR_SEND_LEN

global HDR_RCV_LEN

HDR_SEND_LEN = 66

HDR_RCV_LEN = 67

if IS_AB: ## MICRO

CIP_SEND_SIZE = 112

CIP_RECV_SIZE = 144

if IS_CONTROL: ## ControlLogix

CIP_SEND_SIZE = 126

CIP_RECV_SIZE = 145

else: ## OMRON

CIP_SEND_SIZE = 112

CIP_RECV_SIZE = 135

class ENIP:

def connect(self , ip, port , slot):

self.recvct = 0

self.error = 0

log = logging.getLogger(’ENIP:Connect ’)

status = 0

self.sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

self.sock.setsockopt(socket.IPPROTO_TCP , socket.TCP_NODELAY , 1)

try:

self.sock.connect ((ip , port))

self.sock.setblocking (0)

self.sock.settimeout (5.0)

status = 1

except Exception , e:

log.error(’Status: %i -- Error in connecting to %s:%s \n\tMessage: %s’ % (status , ip, port , e))

return status

self.register_session ()

self.slot = slot

self.context = 0

return status

def close(self):

self.sock.close()

def forwardopen(self):

self.seqcount = 1

self.context = 2

self.conID = self.large_forward_open ()

def send(self , packet):

58

log = logging.getLogger(’ENIP:send ’)

bytes_sent = 0

try:

bytes_sent = self.sock.send(packet)

except Exception , e:

log.error(’Error sending packet \n\t Message :%s’ % e)

return bytes_sent

def recv(self):

ready = select.select ([self.sock], [], [], 0)

if ready [0]:

response = self.sock.recv (65535)

else:

response = None

Populate the object with the data (66+)

self.command = response [0:1]

self.length = response [2:3]

self.shandle = response [4:8]

self.status = response [9:12]

self.sContext = response [13:21]

self.options = response [22:25]

self.intHandle = response [26:30]

self.timeout = response [31:32]

self.iCount = response [33:34]

self.typeID1 = response [35:36]

self.length1 = response [37:38]

self.typeID2 = response [39:40]

self.Length2 = response [41:42]

self.service = response [43]

self.status = response [44:45]

self.data = response [46:]

return response

def collect(self , obj , tm):

log = logging.getLogger(’ENIP:collect ’)

starttime = time.time()

elapsedtime = 0

stilltime = True

exittime = tm + RCV_WAIT ## Pad the exit time to allow adequate time to collect all responses

pkt_start = 0

pkt_end = 0

tempbuf = ""

print "receiving for " + str(exittime) + " seconds ..."

while (stilltime):

receving 68 bytes +

66 additional bytes = TCP header (32) + IP header (20) + Ethernet Frame (14)

data = obj.recv()

log.debug(’----- LOAD TEST COLLECT : ----- \n\t Recv: %s ’ % data)

if not data is None:

tempbuf += data

while not tempbuf is None:

pkt_start = tempbuf.find(’\x6F\x00 ’)

if pkt_start == -1:

break

pkt_end = tempbuf.find(’\x6F\x00 ’, pkt_start +2)

if pkt_end == -1:

break

else:

response = tempbuf[pkt_start:pkt_end -1]

tempbuf = tempbuf[pkt_end:]

log.debug(’----- LOAD TEST CHECK: ----- buf %i \t pkt_start %i \t pkt_end %i \n\t Checking response:

%s’ % (len(tempbuf), pkt_start , pkt_end , response.encode(’hex ’)))

if self.checkpacket(response):

self.recvct += 1

time.sleep (0.001)

elapsedtime = time.time()-starttime

stilltime = (elapsedtime < exittime)

if (not stilltime) and (tempbuf): ## do one more check for a "dangling packet" before exiting

59

pkt_start = tempbuf.find(’\x6F\x00 ’)

if pkt_start != -1:

log.debug(’----- LAST LOAD TEST CHECK: ----- buf %i \t pkt_start %i \t pkt_end %i \n\t Checking

response: %s’ % (len(tempbuf), pkt_start , pkt_end , response.encode(’hex ’)))

response = tempbuf[pkt_start:len(tempbuf) -1]

if self.checkpacket(response):

self.recvct += 1

def checkpacket(self , response):

log = logging.getLogger(’ENIP:checkpacket ’)

if response is None:

return

len_response = len(response) + HDR_RCV_LEN

response = response.encode(’hex ’)

log.debug(’----- LOAD TEST: ----- \n\t Recv: %s %s %s %s %s’

% (response [0:4], response [4:8] , response [8:16] , response [16:24] , response [24:]))

if (len_response == CIP_RECV_SIZE):

if(response [82:86]== ’0000 ’): # CIP Success message is 0000

self.recvct += 1

log.debug(’\t[+] Validated receipt ’)

return True

else:

log.debug(’\t[x] Error message received\n\t %s’ % response [82:86])

self.error += 1

else:

log.debug(’\t[x] Unexpected response (length: %i, expected: %i)\n\t %s’ % (len_response , CIP_RECV_SIZE

, response))

self.error += 1

return False

def wrapUnconnectedSend(self , message , route):

Service and meta data

result = ’5202200624010299 ’. decode(’hex ’)

Message req size in bytes (2 bytes)

result = result + struct.pack(’<H’, len(message))

Message

result = result + message

Length of route (technically only 1 byte , but the other will

always be zero anyway

result = result + struct.pack(’<H’, len(route)/2)

result = result + route

return result

def getPathOnBack(self , slot):

#req2 = ’0101120 f3139322e3136382e3130382e32313000 ’. decode(’hex ’)

result = ’\x01 ’ + struct.pack(’B’, slot)

return result

def register_session (self):

log = logging.getLogger(’ENIP:reg_session ’)

reg = "\x65\x00\x04\x00\

x01\x00\x00\x00"

self.send(reg)

response = self.sock.recv (1024)

if response:

self.session = response [4:8]

else:

self.session = None

response = response.encode(’hex ’)

reg = reg.encode(’hex ’)

log.debug(’REGISTER SESSION: %i \n\t Mesg: %s %s %s %s %s \n\t Resp: %s %s %s %s %s’

% (len(response), reg [0:4] , reg[4:8], reg [8:16] , reg [16:24] , reg[24:],

response [0:4], response [4:8], response [8:16] , response [16:24] , response [24:]))

return self.session

def getAttributeAll(self , cls , inst):

packet = ’\x01\x02\x20 ’ + struct.pack(’B’, cls) + ’\x24 ’ + struct.pack(’B’, inst)

return packet

60

def wrapENIPHeader(self , packet , command=’\x70\x00 ’):

context = struct.pack(’<Q’, self.context)

self.context += 1

leng = struct.pack(’<H’, len(packet))

status = ’\x00 ’*4

options = ’\x00\x00\x00\x00 ’

header = command + leng + self.session + status + context + options

return header + packet

Assumes CIP

def wrapENIP(self , itemtype , item , itemtype2=None , item2=None , command=’\x70\x00 ’):

count = 1

packet = struct.pack(’<H’, itemtype)

packet += struct.pack(’<H’, len(item))

packet += item

if not (itemtype2 is None or item2 is None):

count = 2

packet += struct.pack(’<H’, itemtype2)

packet += struct.pack(’<H’, len(item2))

packet += item2

Interface handle and timeout

packet = ’\x00 ’ * 4 + ’\x0a\x00 ’ + struct.pack(’<H’, count) + packet

return self.wrapENIPHeader(packet , command)

class loadThread (threading.Thread):

def __init__(self , threadID , tgtIP , tgtPort , duration , rate):

threading.Thread.__init__(self)

self.name = threadID

self.tgtIP = tgtIP

self.tgtPort = tgtPort

self.duration = duration

self.rate = rate

self.totals = (0, 0, 0)

def run(self):

log = logging.FileHandler(self.name+’_verbose.log ’)

log.setLevel(logging.DEBUG)

logging.getLogger(’’).addHandler(log)

log = logging.getLogger(’loadThread:run ’)

log.debug(’Starting thread %s’ % self.name)

Get lock to synchronize threads

threadLock.acquire ()

self.tstart = time.time()

self.totals = LoadTest(self.tgtIP , self.tgtPort , self.duration , self.rate)

self.tfinish = time.time()

ttime = self.tfinish -self.tstart

self.totals += (ttime - RCV_WAIT ,) ## Ignore the 5 second RECV() wait time

log.info(’ [+] Thread %s done in %.4f sec \n\t #err: %i \t send: %.2f \t recv: %.2f (bytes)’

% (self.name , self.totals [3], self.totals [0], self.totals [1], self.totals [2]))

Free lock to release next thread

threadLock.release ()

def join(self):

threading.Thread.join(self)

return self.totals

def sendPacket(ip, port , cls , att):

e = ENIP()

e.connect(ip ,port ,0)

CIP portion

d = e.getAttributeAll(cls , att)

ENIP header

d = e.wrapENIP(0, ’’, 0xB2 , d, command=’\x6f\x00 ’)

e.send(d)

reply = e.recv().encode(’hex ’)

reply = e.recv()

e.close()

return reply

def LoadTest(tgtIP , tgtPort , tm, pps):

log = logging.getLogger(’main -LoadTest ’)

61

s_total = 0

r_total = 0

error = 0

send = 0

recvct = 0

sendttl = 0

obj = ENIP()

if not obj.connect(tgtIP , tgtPort , 0):

log.debug(’No connection. Breaking ’)

return (0,0,0)

CIP portion

frame = obj.getAttributeAll (1,1)

ENIP header

if IS_CONTROL:

frame = obj.wrapUnconnectedSend(frame , obj.getPathOnBack (0))

frame = obj.wrapENIP(0, ’’, 0xB2 , frame , command=’\x6f\x00 ’)

frame_hex = frame.encode(’hex ’)

if pps == 0: # Unlimited packet rate

pps = 1000000

pkt_sleep = 1.0 / pps

rcv = threading.Thread(target=obj.collect , args=(obj , tm))

rcv.start()

time.sleep (5)

starttime = time.time()

curr = time.time()

while curr < (starttime + tm):

sec = curr + 1

sendct = 0

sleeptime = pkt_sleep

while (curr <= sec):

if (sendct < pps):

Sending 46 bytes / receive 70 in return , plus

66 additional bytes = TCP header (32) + IP header (20) + Ethernet Frame (14)

pkt_start = time.time()

while ((time.time() - pkt_start) < sleeptime):

#log.debug(’Sleeping it off START %.5f / NOW %.5f / UNTIL %.5f’ % (pkt_start , ((time.time()

- pkt_start)), sleeptime))

pass

send = obj.send(frame) + HDR_SEND_LEN

log.debug(’----- LOAD TEST: ----- TIME\t%.5f \n\t Sent: %s %s %s %s %s’

% (pkt_start , frame_hex [0:4], frame_hex [4:8] , frame_hex [8:16] , frame_hex [16:24] , frame_hex

[24:]))

if send != CIP_SEND_SIZE:

log.debug(’\t[X] Error sending\n\t (sent: %i, expected: %i)’ % (send , CIP_SEND_SIZE))

error += 1

sendct += 1

else:

s_total += send

sendct += 1

sendttl += 1

pkt_fin = time.time() - pkt_start

sleeptime = pkt_sleep - pkt_fin

#print ’time.time ’, time.time(), ’PKT_ST ’, pkt_start , ’PKT_FIN:’, pkt_fin

if(sleeptime >= 0.0):

time.sleep(sleeptime *.1)

curr = time.time()

log.info(’waiting for recv() threads to close ...’)

rcv.join()

recvct += obj.recvct

print "Leaving LoadTest (Errors: ", error , "Sent Ct: ", sendttl , " / Recv Ct: ", recvct , ")"

error += obj.error + (sendttl - obj.recvct) ## Errors are Invalid responses + No responses

r_total = recvct * CIP_RECV_SIZE ## Successful receives count * response size (need to verify)

62

obj.close()

print "Leaving LoadTest (Err: ", error , " / Sent: ", s_total , " / Recv: ", r_total , ")"

return(error , s_total , r_total)

def FindMaxSessions(tgtIP , tgtPort):

log = logging.getLogger(’main -FindMaxSessions ’)

conn = []

i = 0

while True:

i += 1

obj = ENIP()

obj.connect(tgtIP , tgtPort , 0)

if (not obj.session):

log.debug(’\t[X] No Session Received’)

break

conn.append(obj)

log.debug(’Registering session #: %i \tID: %s’ % (i, obj.session.encode(’hex ’)))

time.sleep (5)

#

for i in range(0, 10):

obj = conn.pop()

print "[Closing 10 Connections]\ tSession #: ", i+1, "\tID: ", obj.session.encode(’hex ’)

obj.close ()

#

time.sleep (5)

i = 0

#

while True:

i += 1

obj = ENIP()

obj.connect(tgtIP , tgtPort , 0)

if not obj.session:

print "No session received ..."

break

conn.append(obj)

print "[Building list 2]\ tSession #: ", i, "\tID: ", obj.session.encode(’hex ’)

#

maxlength = len(conn)

time.sleep (5)

for i in range(0, len(conn)):

obj = conn.pop()

log.debug(’\t Closing session #: %i \tID: %s’ % (i+1, obj.session.encode(’hex ’)))

obj.close()

return maxlength

threadLock = threading.Lock()

threads = []

def getArgs ():

parser = argparse.ArgumentParser(

description ="A load testing program for Allen Bradely L61 Controller",

)

Required arguments

parser.add_argument ("tgtIP", help="IP Address of target (proxied) device ")

parser.add_argument (" tgtPort", help="TCP Port of target (proxied) device", type=int)

Optional arguments

parser.add_argument ("-f","--filename", help="Base file name for logging (will append _verbose.log and

_console.log , default: benchtest", type=str)

parser.add_argument ("-d", "--duration", help=" Duration of each test (seconds), default: 60s", type=int)

parser.add_argument ("-r","--rate", help="Rate of packets per second to send , default: 50pps", type=int)

parser.add_argument ("-t","--min -threads", help=" Number of threads to start testing , default: 1", type=int)

parser.add_argument ("-T","--max -threads", help=" Number of threads to test up to, default: MAX", type=int)

parser.add_argument ("-v","--variation", help="Type of equipment under test ABC=ControlLogix ABM=MicroLogix

or OM=OMRON", type=str)

args = parser.parse_args ()

if args.duration:

duration = args.duration

else:

duration = 60

if args.rate:

rate = args.rate

else:

rate = 50

63

if args.min_threads:

threads_min = args.min_threads

else:

threads_min = 1

if args.max_threads:

threads_max = args.max_threads

else:

threads_max = 0

if args.filename:

filename = args.filename

else:

filename = "benchtest"

global IS_AB

global IS_CONTROL

if args.variation:

if args.variation == ’ABC ’:

IS_AB = True

IS_CONTROL = True

elif args.variation == ’ABL ’:

IS_AB = True

IS_CONTROL = False

elif args.variation == ’OM ’:

IS_AB = False

IS_CONTROL = False

return args.tgtIP , args.tgtPort , args.duration , args.rate , threads_min , threads_max , filename

def main():

tgtIP = ’192.168.0.119 ’

tgtPort = 44818

cls = 1

att = 1

tgtIP , tgtPort , duration , rate , threads_min , threads_max , logfile = getArgs ()

cls = 1 # CIP Class

att = 1 # CIP Attribute

runtime = time.time()

logging.basicConfig(level=logging.INFO ,

format =’%(asctime)s %(name) -25s %(levelname)-8s %(message)s’,

datefmt=’%d-%b-%y %H:%M:%S’,

filename=logfile+’_verbose.log ’,

filemode=’w’)

console = logging.StreamHandler ()

console.setLevel(logging.INFO)

file = logging.FileHandler(logfile+’_console.log ’)

file.setLevel(logging.INFO)

formatter = logging.Formatter (’%(message)s’)

console.setFormatter(formatter)

file.setFormatter(formatter)

logging.getLogger(’’).addHandler(console)

logging.getLogger(’’).addHandler(file)

log = logging.getLogger(’main -main ’)

SetSizes ()

Start tcpdump HERE

log.info(’Testing started at %s’ % time.asctime(time.localtime(time.time())))

log.info(’\tIS_AB: %s / IS_CONTROL: %s \t CIP_SEND_SIZE: %i / CIP_RECV_SIZE %i / HDR_SEND_LEN %i /

HDR_RCV_LEN %i’ % (IS_AB , IS_CONTROL , CIP_SEND_SIZE , CIP_RECV_SIZE , HDR_SEND_LEN , HDR_RCV_LEN))

Prerequisite: Verify connectivity

log.info(’>> Verifying connectivity with sendPacket ...’)

##

self.command = response [0:4] ENIP Header

self.length = response [4:8]

self.shandle = response [8:16]

self.status = response [16:24

self.sContext = response [24:40]

self.options = response [40:48]

self.intHandle = response [48:56]

self.timeout = response [56:60]

self.iCount = response [60:64]

self.typeID1 = response [64:68]

self.length1 = response [68:72]

self.typeID2 = response [72:76]

self.Length2 = response [76:80]

self.service = response [80:82] CIP Message

64

self.status = response [82:86]

self.data = response [86:]

##

packet = sendPacket(tgtIP , tgtPort , cls , att)

log.debug(’Good message: \n\t [ENIP]\t %s %s %s %s %s \n\t [CIP]\t %s %s %s’ % \

(packet [0:4], packet [4:8], packet [8:16] , packet [16:24] , packet [24:80] , \

packet [80:82] , packet [82:86] , packet [86:]))

##

packet = sendPacket(tgtIP , tgtPort , cls , 16)

log.debug(’Error message: \n\t [ENIP]\t %s %s %s %s %s \n\t [CIP]\t %s %s %s’ % \

(packet [0:4], packet [4:8], packet [8:16] , packet [16:24] , packet [24:80] , \

packet [80:82] , packet [82:86] , packet [86:]))

##

Test 1: Find max sessions

log.info(’>> Running FindMaxSessions ...’)

maxsessions = FindMaxSessions(tgtIP , tgtPort)

##

log.info(’\t Maximum sessions: \t %i’ % maxsessions)

##

Test 2: Find max throughput in a session

duration = 60 # length of test in seconds

rate = 50 # packets per second (0 = MAX; 62-65 = Effective MAX)

totals = (0, 0, 0)

#

log.info(’>> Running single instance of LoadTest for %i seconds (@ %i pps)...’ % (duration , rate))

#

totals = LoadTest(tgtIP , tgtPort , duration , rate)

log.info(’\t Errors: \t\t %i \n\t Avg rate (send): \t %.2f bytes/sec \n\t Avg rate (recv): \t %.2f bytes/

sec ’ \

% (totals [0], (totals [1]/ duration), (totals [2]/ duration)))

#

Test 3: Find max throughput with multiple sessions

numthreads = 3 # number of concurrent threads

if threads_max == 0: threads_max = maxsessions # number of concurrent threads

totalstable =[]

extime = 0

for j in range(threads_min , threads_max +1):

totals = (0, 0, 0, 0, 0)

log.info(’>> Starting threaded LoadTest with %i / %i threads for %i seconds (@ %i pps)...’ \

% (j, threads_max , duration , rate))

starttime = time.time()

Create new threads

for i in range (1, j+1):

thrID = logfile + ’_’ + ‘j‘ + ’.’ + ‘i‘

thread = loadThread(thrID , tgtIP , tgtPort , duration , rate)

thread.start()

threads.append(thread)

wait = 0.1 * random.random ()

log.info (’[*] Stagger time for thread %i: %.3f sec ’ % (i, wait))

time.sleep(wait)

Wait for all threads to complete

for t in threads:

returned = t.join()

totals = (totals [0] + returned [0], totals [1] + returned [1], totals [2] + returned [2], totals [3] +

returned [3])

extime = time.time()-starttime

totals += (extime ,)

totalstable.append(totals)

log.info(’ --- Round %i summary ------------------ \n\t Elapsed Time: \t\t %.4f sec \n\t Errors: \t\t

%i \n\t Avg rate (send): \t %.2f bytes/sec \n\t Avg rate (recv): \t %.2f bytes/sec \n\t Avg thread

time: \t %.4f sec ’

% (j, extime ,

totals [0],

(totals [1]/(totals [3]/j)),

(totals [2]/(totals [3]/j)),

totals [3]/j))

log.debug(’Thread pool BEFORE: \t %s’ % threads)

Empty the list of threads to avoid residual data

while len(threads) > 0 : threads.pop()

log.debug(’Thread pool AFTER: \t %s’ % threads)

log.info(’Printing tabulated results to screen ’)

print "\nThr\tDur\tRt\tErr\tPktSnd\tPktRcv\tAvgSendRt\tAvgRecvRt\tAvgThTime\tElTime"

print "---\t---\t--\t---\t------\t------\t---------\t---------\t---------\t------"

65

for j in range(0, 1+(threads_max -threads_min)):

print j+threads_min , "\t", duration , "\t", rate , "\t", totalstable[j][0], "\t", (totalstable[j][1]/

CIP_SEND_SIZE), "\t", (totalstable[j][2]/ CIP_RECV_SIZE) ,"\t",(totalstable[j][1]/(totalstable[j

][3]/(j+threads_min))), "\t", (totalstable[j][2]/(totalstable[j][3]/(j+threads_min))), "\t", (

totalstable[j][3]/(j+threads_min)), "\t", totalstable[j][4]

endtime = time.time()

log.info(’Load test completed at %s -- Total elapsed time: %i sec ’ % (time.asctime(time.localtime(time.

time())), endtime -runtime))

Stop tcpdump HERE

if __name__ == ’__main__ ’:

main()

66

Appendix C. PLC Templates

L61.conf: Allen-Bradley L61 PLC

##

#... DEFAULT TEMPLATE ..

honeyd will dynamically clone the default template for any IP

address on its subnet that is not specifically bound to a template

(below)

##

create default

set default personality "VxWorks"

set default ethernet "Rockwell Automation"

set default default icmp action open

set default default tcp action reset

add default tcp port 80 proxy 172.16.0.105:80

add default tcp port 44818 proxy 172.16.0.105:44818

add default udp port 44818 proxy 172.16.0.105:44818

add default udp port 2222 proxy 172.16.0.105:2222

set default default udp action block

##

#... INVIS TEMPLATE ..

the invis template is used to exclude other hosts (e.g. production hosts)

that already exist on the network.

##

create invis

set invis default tcp action block

set invis default udp action block

set invis default icmp action block

bind 172.16.0.105 invis

bind 172.16.0.72 invis

##

#... ADDITIONAL TEMPLATES ..

Additional unique templates can be defined here. Multiple IP

addresses can be bound to a single template

##

create L61

set L61 personality "VxWorks"

set L61 ethernet "Rockwell Automation"

set L61 default tcp action reset

set L61 default udp action reset

set L61 default icmp action open

add L61 tcp port 80 proxy 172.16.0.105:80

add L61 tcp port 44818 proxy 172.16.0.105:44818

add L61 udp port 44818 proxy 172.16.0.105:44818

add L61 udp port 2222 proxy 172.16.0.105:2222

bind 172.16.108.2 L61

bind 172.16.108.3 L61

bind 172.16.108.4 L61

bind 172.16.108.5 L61

....

bind 172.16.108.74 L61

bind 172.16.108.75 L61

bind 172.16.108.76 L61

##

#... ICSPROXY options ..

The options for the ICSPROXY functionality are split into a separate

file , for clarity.

##

honeyd configuration parsing uses these REGEX to cast types to options (STRING|FLOAT|INT [NUMBER])

[0-9]+ { yylval.number = atoi(yytext); return NUMBER; }

[0 -9]+\.[0 -9]+ { yylval.floatp = atof(yytext); return FLOAT; }

[\$A -Za-z][\.\(\) \/A-Za -z_\-0-9*]* { yylval.string = strdup(yytext); return STRING; }

##

##

... COMPUTED OPTIONS ..

The following options are "find" criteria , and the associated

"replace" terms are computed using template -specific properties when

the search list is populated into each template.

##

’ip’ is a keyword , so use ipaddr instead.

Force the interpretation of the dotted decimal notation as a string with a "$" at the beginning

option icsproxy ipaddr $172 .16.0.105

’ethernet ’ is a keyword , so use ethaddr instead.

Force the interpretation of the dotted decimal notation as a string with a "$" at the beginning.

67

Also use dashes (-) instead of colons (:) to separate the MAC address

option icsproxy ethaddr $00 -1D-9C-BE -67-93

option icsproxy hostname $eWeb_xxx

option icsproxy serial $00932471

Pass binary patterns with the prefix $(hex)

option icsproxy $(hex)313735362 d45574542 $(hex)3534313900393324716768

option icsproxy 1 7 5 6 - E W E B 5 4 1 9\x 9 3 $ q C D

##

... ADDITIONAL OPTIONS ..

Additional [static] find/replace criteria can be specified using the

following syntax:

OPTION ICSPROXY <FIND > <REPLACE >

##

option icsproxy plc.water.s5 plc.water.A0

option icsproxy site facility

option icsproxy interest bail

option dummy test1 test2

option dummy test3 test4

option dummy test5 test6

option check test1 test2

option check test3 test4

option check test5 test6

CP1L.conf: Omron CP1L PLC

##

#... DEFAULT TEMPLATE ..

honeyd will dynamically clone the default template for any IP

address on its subnet that is not specifically bound to a template

(below)

##

create default

set default personality "VxWorks"

set default ethernet "Rockwell Automation"

set default default icmp action open

set default default tcp action reset

add default tcp port 80 proxy 172.16.0.105:80

add default tcp port 44818 proxy 172.16.0.105:44818

add default udp port 44818 proxy 172.16.0.105:44818

add default udp port 2222 proxy 172.16.0.105:2222

set default default udp action block

##

#... INVIS TEMPLATE ..

the invis template is used to exclude other hosts (e.g. production hosts)

that already exist on the network.

##

create invis

set invis default tcp action block

set invis default udp action block

set invis default icmp action block

bind 172.16.0.105 invis

bind 172.16.0.72 invis

##

#... ADDITIONAL TEMPLATES ..

Additional unique templates can be defined here. Multiple IP

addresses can be bound to a single template

##

create CP1L

set CP1L personality "HP iLO 2 remote management interface"

set CP1L ethernet "Grid Connect"

set CP1L default tcp action reset

set CP1L default udp action reset

set CP1L default icmp action open

add CP1L tcp port 80 proxy 172.16.0.106:80

add CP1L tcp port 9999 proxy 172.16.0.106:9999

add CP1L tcp port 44818 proxy 172.16.0.106:44818

add CP1L udp port 44818 proxy 172.16.0.106:44818

add CP1L udp port 69 proxy 172.16.0.106:69

add CP1L udp port 2222 proxy 172.16.0.106:2222

add CP1L udp port 9600 proxy 172.16.0.106:9600

add CP1L udp port 30718 proxy 172.16.0.106:30718

add CP1L udp port 44818 proxy 172.16.0.106:44818

bind 172.16.108.2 CP1L

68

bind 172.16.108.3 CP1L

bind 172.16.108.4 CP1L

...

bind 172.16.108.74 CP1L

bind 172.16.108.75 CP1L

bind 172.16.108.76 CP1L

##

#... ICSPROXY options ..

The options for the ICSPROXY functionality are split into a separate

file , for clarity.

##

honeyd configuration parsing uses these REGEX to cast types to options (STRING|FLOAT|INT [NUMBER])

[0-9]+ { yylval.number = atoi(yytext); return NUMBER; }

[0 -9]+\.[0 -9]+ { yylval.floatp = atof(yytext); return FLOAT; }

[\$A -Za-z][\.\(\) \/A-Za -z_\-0-9*]* { yylval.string = strdup(yytext); return STRING; }

##

##

... COMPUTED OPTIONS ..

The following options are "find" criteria , and the associated

"replace" terms are computed using template -specific properties when

the search list is populated into each template.

##

’ip’ is a keyword , so use ipaddr instead.

Force the interpretation of the dotted decimal notation as a string with a "$" at the beginning

option icsproxy ipaddr $172 .16.0.106

’ethernet ’ is a keyword , so use ethaddr instead.

Force the interpretation of the dotted decimal notation as a string with a "$" at the beginning.

Also use dashes (-) instead of colons (:) to separate the MAC address

option icsproxy ethaddr $00 -1D-4B-F0 -22-66

option icsproxy hostname $CP1W -EIP61

option icsproxy serial $4bf02266

Pass binary patterns with the prefix $(hex)

option icsproxy C P 1 W - E I P 6 1 R J 5 X ! N Q A 9 2

option icsproxy $(hex)435031572 d4549503631 $(hex)524 a3558214e51413932

##

... ADDITIONAL OPTIONS ..

Additional [static] find/replace criteria can be specified using the

following syntax:

OPTION ICSPROXY <FIND > <REPLACE >

##

option icsproxy plc.water.s5 plc.water.A0

option icsproxy site facility

option icsproxy interest bail

option dummy test1 test2

option dummy test3 test4

option dummy test5 test6

option check test1 test2

option check test3 test4

option check test5 test6

69

Appendix D. Performance Test Raw Data

70

Table 4.1. Summary Statistics (verbose) for the L61, EtherNet/IP Protocol

Platform
(ENIP)

rate Repetition Mean StdDev Var Min Max

Baseline-L61 10x30 run1 29.46% 1.71% 0.03% 26.19% 33.74%
run2 29.80% 1.76% 0.03% 24.97% 36.30%
run3 32.82% 1.39% 0.02% 29.58% 35.64%

12x25 run1 35.09% 1.44% 0.02% 31.89% 37.88%
run2 35.65% 2.34% 0.05% 32.33% 49.03%
run3 38.57% 1.61% 0.03% 35.51% 45.00%

20x15 run1 58.69% 1.63% 0.03% 55.36% 62.82%
run2 59.13% 1.88% 0.04% 55.28% 63.77%
run3 62.20% 1.96% 0.04% 55.76% 65.77%

4x75 run1 9.28% 1.42% 0.02% 4.48% 15.37%
run2 9.09% 0.83% 0.01% 7.09% 11.06%
run3 9.22% 1.13% 0.01% 6.22% 12.58%

5x60 run1 14.41% 1.86% 0.03% 11.18% 22.78%
run2 14.19% 1.48% 0.02% 11.41% 20.86%
run3 14.71% 1.14% 0.01% 13.00% 17.44%

PC-L61 10x30 run1 30.06% 1.88% 0.04% 26.39% 34.82%
run2 30.93% 1.79% 0.03% 27.42% 34.64%
run3 34.44% 1.86% 0.03% 30.96% 39.34%

12x25 run1 36.18% 1.68% 0.03% 32.80% 40.84%
run2 36.72% 1.64% 0.03% 33.71% 40.38%
run3 40.58% 1.72% 0.03% 36.13% 43.03%

20x15 run1 63.86% 1.82% 0.03% 58.39% 68.33%
run2 63.95% 1.66% 0.03% 60.09% 67.68%
run3 67.80% 1.95% 0.04% 62.72% 72.40%

4x75 run1 11.37% 2.15% 0.05% 9.52% 23.74%
run2 11.48% 2.28% 0.05% 9.44% 23.40%
run3 11.40% 1.35% 0.02% 8.72% 18.20%

5x60 run1 16.36% 1.53% 0.02% 14.00% 23.34%
run2 16.14% 0.99% 0.01% 14.30% 18.99%
run3 16.51% 1.11% 0.01% 14.48% 18.80%

Pi-L61 10x30 run1 27.45% 1.98% 0.04% 23.73% 33.84%
run2 28.06% 1.85% 0.03% 23.00% 31.52%
run3 31.82% 3.08% 0.09% 28.92% 50.50%

12x25 run1 33.44% 1.35% 0.02% 29.20% 36.06%
run2 33.71% 1.62% 0.03% 29.10% 37.81%
run3 36.98% 1.61% 0.03% 33.77% 40.13%

20x15 run1 60.06% 2.45% 0.06% 55.78% 71.80%
run2 59.85% 1.59% 0.03% 55.06% 62.80%
run3 63.34% 2.30% 0.05% 54.71% 67.00%

4x75 run1 7.88% 1.07% 0.01% 5.32% 10.28%
run2 7.65% 1.19% 0.01% 4.18% 10.62%
run3 7.58% 0.97% 0.01% 5.16% 10.00%

5x60 run1 12.65% 1.37% 0.02% 10.69% 15.48%
run2 12.44% 1.07% 0.01% 10.11% 15.58%

71

Table 4.2. Summary Statistics (verbose) for the L61, HTTP Protocol

Platform
(ENIP)

rate Repetition Mean StdDev Var Min Max

Baseline-L61 10x5 run1 18.03% 1.31% 0.02% 15.87% 22.33%
run2 17.50% 1.29% 0.02% 14.47% 20.00%
run3 22.63% 3.07% 0.09% 17.27% 30.60%

1x50 run1 0.66% 4.64% 0.22% 0.00% 32.80%
run2 0.64% 4.53% 0.20% 0.00% 32.00%
run3 0.69% 4.86% 0.24% 0.00% 34.40%

25x2 run1 54.09% 2.22% 0.05% 46.33% 57.20%
run2 54.19% 2.31% 0.05% 46.60% 58.07%
run3 59.16% 1.95% 0.04% 50.80% 62.93%

2x25 run1 0.09% 0.09% 0.00% 0.00% 0.47%
run2 0.14% 0.21% 0.00% 0.00% 1.20%
run3 0.21% 0.64% 0.00% 0.00% 4.47%

5x10 run1 14.12% 1.48% 0.02% 10.67% 17.47%
run2 13.48% 1.91% 0.04% 7.27% 17.53%
run3 12.52% 1.50% 0.02% 9.00% 15.07%

PC-L61 10x5 run1 32.28% 0.11% 0.00% 32.07% 32.53%
run2 32.27% 0.13% 0.00% 31.80% 32.47%
run3 32.21% 0.16% 0.00% 31.73% 32.53%

1x50 run1 32.41% 0.09% 0.00% 32.13% 32.53%
run2 32.43% 0.11% 0.00% 32.00% 32.53%
run3 32.44% 0.06% 0.00% 32.33% 32.53%

25x2 run1 58.53% 1.32% 0.02% 54.80% 60.67%
run2 58.44% 1.50% 0.02% 51.87% 60.87%
run3 63.11% 1.51% 0.02% 57.67% 66.27%

2x25 run1 32.47% 0.07% 0.00% 32.27% 32.53%
run2 32.47% 0.08% 0.00% 32.13% 32.53%
run3 32.33% 0.11% 0.00% 32.07% 32.53%

5x10 run1 32.34% 0.11% 0.00% 32.13% 32.53%
run2 32.33% 0.12% 0.00% 32.07% 32.53%
run3 32.30% 0.11% 0.00% 32.07% 32.53%

Pi-L61 10x5 run1 31.87% 0.24% 0.00% 31.33% 32.27%
run2 31.91% 0.22% 0.00% 31.33% 32.33%
run3 31.74% 0.19% 0.00% 31.40% 32.20%

1x50 run1 32.11% 0.18% 0.00% 31.67% 32.47%
run2 32.05% 0.21% 0.00% 31.47% 32.47%
run3 32.10% 0.16% 0.00% 31.73% 32.40%

25x2 run1 57.35% 1.93% 0.04% 51.27% 64.00%
run2 57.42% 1.31% 0.02% 53.80% 60.33%
run3 62.13% 1.57% 0.02% 56.20% 65.07%

2x25 run1 32.24% 0.14% 0.00% 31.87% 32.47%
run2 32.25% 0.16% 0.00% 31.73% 32.47%
run3 32.24% 0.14% 0.00% 31.80% 32.53%

5x10 run1 31.95% 0.16% 0.00% 31.67% 32.47%
run2 31.95% 0.23% 0.00% 31.40% 32.27%

72

Table 4.3. Summary Statistics (verbose) for the CP1L, ENIP Protocol

Platform
(ENIP)

rate Repetition Mean StdDev Var Min Max

Baseline-CP1L 1x80 run1 0.00% 0.00% 0.00% 0.00% 0.00%
run2 0.00% 0.00% 0.00% 0.00% 0.00%
run3 0.00% 0.00% 0.00% 0.00% 0.00%

2x40 run1 3.68% 13.98% 1.95% 0.00% 75.04%
run2 2.43% 8.80% 0.77% 0.00% 45.83%
run3 4.23% 18.01% 3.25% 0.00% 92.00%

4x20 run1 13.83% 30.08% 9.05% 0.29% 99.21%
run2 11.52% 22.99% 5.28% 0.33% 99.17%
run3 7.78% 16.02% 2.57% 0.29% 75.79%

PC-CP1L 1x80 run1 0.00% 0.00% 0.00% 0.00% 0.00%
run2 0.00% 0.00% 0.00% 0.00% 0.00%
run3 0.00% 0.00% 0.00% 0.00% 0.00%

2x40 run1 0.17% 0.11% 0.00% 0.00% 0.46%
run2 0.17% 0.13% 0.00% 0.00% 0.54%
run3 0.19% 0.15% 0.00% 0.00% 0.63%

4x20 run1 28.35% 4.40% 0.19% 23.38% 52.92%
run2 28.34% 4.25% 0.18% 23.58% 50.96%
run3 28.39% 4.90% 0.24% 24.71% 51.04%

Pi-CP1L 1x80 run1 0.00% 0.00% 0.00% 0.00% 0.00%
run2 0.00% 0.00% 0.00% 0.00% 0.00%
run3 0.00% 0.00% 0.00% 0.00% 0.00%

2x40 run1 3.09% 10.43% 1.09% 0.00% 49.71%
run2 1.32% 5.94% 0.35% 0.00% 42.33%
run3 2.80% 9.96% 0.99% 0.00% 58.63%

4x20 run1 29.36% 9.20% 0.85% 22.92% 87.04%
run2 29.87% 7.77% 0.60% 24.33% 67.33%
run3 29.31% 6.49% 0.42% 23.83% 60.88%

73

Table 4.4. Summary Statistics (verbose) for the CP1L, HTTP Protocol

Platform
(ENIP)

rate Repetition Mean StdDev Var Min Max

Baseline-CP1L 1x20 run1 87.59% 0.45% 0.00% 86.67% 88.50%
run2 87.68% 0.42% 0.00% 86.50% 88.50%
run3 87.71% 0.44% 0.00% 86.83% 88.50%

2x10 run1 85.83% 0.83% 0.01% 83.50% 87.33%
run2 85.74% 0.77% 0.01% 83.00% 87.67%
run3 85.75% 0.70% 0.00% 84.33% 87.50%

4x5 run1 86.76% 0.63% 0.00% 85.33% 88.17%
run2 86.79% 0.60% 0.00% 85.83% 88.33%
run3 86.78% 0.64% 0.00% 85.33% 87.83%

PC-CP1L 1x20 run1 88.66% 0.02% 0.00% 88.50% 88.67%
run2 88.65% 0.05% 0.00% 88.50% 88.67%
run3 88.66% 0.05% 0.00% 88.50% 88.83%

2x10 run1 88.88% 0.18% 0.00% 88.67% 89.33%
run2 88.87% 0.16% 0.00% 88.67% 89.33%
run3 88.86% 0.18% 0.00% 88.67% 89.17%

4x5 run1 88.69% 0.06% 0.00% 88.67% 88.83%
run2 88.66% 0.05% 0.00% 88.50% 88.83%
run3 88.69% 0.08% 0.00% 88.50% 89.00%

Pi-CP1L 1x20 run1 88.73% 0.32% 0.00% 88.50% 90.83%
run2 88.79% 0.52% 0.00% 88.50% 91.50%
run3 88.66% 0.08% 0.00% 88.50% 88.83%

2x10 run1 89.15% 0.22% 0.00% 88.83% 90.17%
run2 89.08% 0.18% 0.00% 88.83% 89.50%
run3 89.18% 0.30% 0.00% 88.67% 90.67%

4x5 run1 89.42% 2.66% 0.07% 88.50% 100.00%
run2 88.69% 0.13% 0.00% 88.50% 89.33%
run3 88.68% 0.18% 0.00% 88.50% 89.83%

74

Bibliography

1. M. Bailey et al. ”The Blaster Worm: Then and Now,” IEEE Security & Privacy
, vol.3, no.4, pp. 26-31, July-August 2005.

2. D. Berman, “Emulating Industrial Controls System Devices Using Gumstix
Technology,” M.S. Thesis, Air Force Institute of Technology, Wright-Patterson
Air Force Base, 2012. (www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA563104)

3. R. Bodenheim et al., “Evaluation of the Ability of the Shodan Search Engine to
Identify Internet-Facing Industrial Control Devices,” International Journal of
Critical Infrastructure Protection, 7.2, pp. 114-123, 2014.

4. S. Boyer, SCADA: Supervisory Control and Data Acquisition, 4th ed.
International Society of Automation, 2009.

5. CERT. (January 2002). “CERT Advisory CA-2001-19 ‘Code Red’ Worm
Exploiting Buffer Overflow in IIS Indexing Service DLL,” Cert.org. [Online]
Available: http://www.cert.org/historical/advisories/ca-2001-19.cfm. [Accessed
January 2015].

6. CERT. (January 2003). “CERT Advisory CA-2003-04 MS-SQL Server Worm,”
Cert.org. [Online] Available:
http://www.cert.org/historical/advisories/ca-2003-04.cfm. [Accessed January
2015].

7. CERT. (August 2003). “CERT Advisory CA-2003-20 w32/blaster Worm,”
Cert.org. [Online] Available: www.cert.org/advisories/CA-2003-20.html.
[Accessed January 2015].

8. G. Chamales. “The Honeywall CD-ROM,” IEEE Security & Privacy , vol. 2,
no. 2, pp.77-79, March-April 2004.

9. The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP. Open
DeviceNet Vendor Association (ODVA) & ControlNet International, Ltd, 2007.

10. C-SPAN. (November 20, 2014). “Cybersecurity Threats,” C-Span.org. [Online]
Available
http://http://www.c-span.org/video/?322853-1/hearing-cybersecurity-threats.
[Accessed January 2015].

11. U.S. Department of Homeland Security. (February 2014). “ICS-CERT
Year-in-Review – 2013,” Ics-cert.us-cert.gov. [Online] Available
https://ics-cert.us-
cert.gov/sites/default/files/documents/Year In Review FY2013 Final.pdf.
[Accessed January 2015].

75

12. S. Dunlap. “Timing-Based Side Channel Analysis in the Industrial Control
System Environment,” M.S. Thesis, Air Force Institute of Technology,
Wright-Patterson Air Force Base, 2013.

13. EtherNet/IP Communication Module for CP1L/CP1H PLCs CP1W-EIP61.
OMRON Industrial Automation, 2011. [Online] Available:
http://www.omron-ap.com/data pdf/cat/r37i.pdf?id=3332. [Accessed
December 2014].

14. N. Hrvoje. (2011). GNU Wget. [Online] Available:
http://www.gnu.org/software/wget. [Accessed December 2014].

15. Idaho National Laboratory. (July, 2014). “INL’s SCADA Test Bed,” Inl.gov.
[Online] Available http://www4vip.inl.gov/research/national-supervisory-
control-and-data-acquisition-test-bed. [Accessed November
2014].

16. R. Jaromin. “Emulation of Industrial Control Field Device Protocols,” M.S.
Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base,
March 2013. (www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA582482)

17. S. Hilt. “enip-info NSE Script,” NSE Documentation Portal. [Online] Available
http://nmap.org/nsedoc/scripts/enip-info.html. [Accessed December 2014].

18. G. Lyon. Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning. Insecure. 2009.

19. J. Matherly. “SHODAN Computer Search Engine,” Shodanhq.com [Online]
Available http://www.shodanhq.com. [Accessed October 2014].

20. D. Moore, et al. ”Code-Red: A Case Study on The Spread and Victims of an
Internet Worm,” Proc. of the 2nd ACM Internet Measurement Workshop, pp.
273284. ACM Press, November 2002.

21. D. Moore et al. ”Inside the Slammer Worm,” IEEE Security & Privacy, vol. 1,
no. 4, pp. 33-39, July-August, 2003.

22. V. Pothamsetty, M. Franz. (July, 2005). “SCADA HoneyNet Project: Building
Honeypots for Industrial Networks,” [Online] Available:
http://scadahoneynet.sourceforge.net. [Accessed September 2014].

23. N. Provos. (2002) OpenBSD System Manager’s Manual-honeyd(8). [Online]
Available:
http://http://www.citi.umich.edu/u/provos/honeyd/honeyd-man.pdf.
[Accessed September 2014].

76

24. N. Provos. “A Virtual Honeypot Framework,” in Proc. 13th USENIX Security
Symp., San Diego, CA. The USENIX Association. August 2004.

25. N. Provos and H. Thorsten. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Pearson Education, 2007.

26. L. Rist, et al. (2013) “CONPOT ICS/SCADA Honeypot,” Conpot.org. [Online]
Available http://conpot.org. [Accessed January 2015].

27. Rockwell Automation Publication 1756-td001h-en-p:1756 ControlLogix
Controllers. Rockwell Automation, 2013. [Online] Available
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-
td001 -en-p.pdf). [Accessed December
2014].

28. L. Shaw. (August, 2009). “A String Replacement Function, Replace str(), for
the C Programming Language,” [Online] Available
http://creativeandcritical.net/str-replace-c. [Accessed September 2014].

29. E. Skoudis and T. Liston. Counterhack Reloaded: A Step-by-step Guide to
Computer Attacks and Effective Defenses. Prentice Hall Press, 2005.

30. L. Spitzner. “The Honeynet Project: Trapping the Hackers,” IEEE Security &
Privacy, vol. 1, no. 2, pp. 15-23, March-April, 2003.

31. L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.

32. S. Wade. “SCADA Honeynets: The Attractiveness of Honeypots as Critical
Infrastructure Security Tools for the Detection and Analysis of Advanced
Threats,” M.S. Thesis, Iowa State University, 2011.

77

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2015 Master’s Thesis Sept 2013 — March 2015

Constructing Cost-Effective and Targetable
ICS Honeypots Suited for Production Networks

15G216C

Winn, Michael, M. MAJ, USA

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-15-M-045

Department of Homeland Security ICS-CERT
POC: Neil Hershfield, DHS ICS-CERT Technical Lead
ATTN: NPPD/CSC/NCSD/US-CERT Mailstop: 0635,
245 Murray Lane, SW, Bldg 410, Washington, DC 20528
Email: ics-cert@dhs.gov phone: 1-877-776-7585

DHS ICS-CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Honeypots are a technique that can mitigate the risk of cyber threats. Effective honeypots are authentic and targetable,
and their design and implementation must accommodate risk tolerance and financial constraints. The proprietary, and
often expensive, hardware and software used by Industrial Control System (ICS) devices creates the challenging problem
of building a flexible, economical, and scalable honeypot. This research extends Honeyd into Honeyd+, making it
possible to use the proxy feature to create multiple high interaction honeypots with a single Programmable Logic
Controller (PLC). Honeyd+ is tested with a network of 75 decoy PLCs, and the interactions with the decoys are
compared to a physical PLC to test for authenticity. The performance test evaluates the impact of multiple simultaneous
connections to the PLC. The functional test is successful in all cases. The performance test demonstrated that the PLC
is a limiting factor, and that introducing Honeyd+ has a marginal impact on performance. Notable findings are that the
Raspberry Pi is the preferred hosting platform, and more than five simultaneous connections were not optimal.

Industrial Control Systems, Honeypot, Cyberspace Security

U U U U 89

LTC Mason J. Rice, PhD, AFIT/ENG

(937) 255-3636, x4620; mason.rice@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Assumptions
	Research Goals and Hypothesis
	Related Research
	Thesis Layout

	Background
	Honeypot Characteristics
	Traditional IT Honeypots and Honeynets
	Production Versus Research Honeypots
	Levels of Interaction

	Industrial Control Systems (ICS) Honeypots
	Related Research

	Honeyd

	Device Description
	Design Considerations
	Targetability
	Authenticity

	Pilot Studies
	Pilot Study 1: Building a Honeyd Template
	Pilot Study 2: Honeyd Authenticity Study
	Pilot Study 3: PLC Performance Study

	Improving Authenticity
	Adding Search Terms to the Honeyd Template Object
	Developing the Search Terms
	Search and Replace on the Payload

	Methodology
	Test Environment
	Experimental Design
	Functional Test
	Performance Test

	Limitations

	Results and Analysis
	Functional Test
	Performance Test
	Evaluation

	Conclusion
	Research Conclusions
	Functional Test
	Performance Test
	Research Hypothesis

	Significance of Research
	Future Work
	Test Different PLCs Manufacturer Protocols
	Develop Additional Search Term Capabilities
	Compensate for the Limitations of the PLC
	Deploy on a Network

	Nmap Results from Pilot Study 1
	plcloadtest.py code
	PLC Templates
	Performance Test Raw Data
	Bibliography

